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Chemical Langevin equation: A path-integral view of Gillespie’s derivation
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In 2000, Gillespie rehabilitated the chemical Langevin equation (CLE) by describing two conditions that
must be satisfied for it to yield a valid approximation of the chemical master equation (CME). In this work, we
construct an original path-integral description of the CME and show how applying Gillespie’s two conditions to it
directly leads to a path-integral equivalent to the CLE. We compare this approach to the path-integral equivalent
of a large system size derivation and show that they are qualitatively different. In particular, both approaches
involve converting many sums into many integrals, and the difference between the two methods is essentially the
difference between using the Euler-Maclaurin formula and using Riemann sums. Our results shed light on how
path integrals can be used to conceptualize coarse-graining biochemical systems and are readily generalizable.
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I. INTRODUCTION

Gillespie’s classic paper [1] on how to derive the chemical
Langevin equation (CLE) from the chemical master equation
(CME) proceeds differently than by naively truncating the
Kramers-Moyal expansion of the CME [2–4] or by invoking
the largeness of the system volume � a la van Kampen [5,6];
instead, he argues based on the existence of a timescale with
certain properties. In particular, his derivation avoids rewriting
discrete number variables n as concentration variables x :=
n/�.

By writing down two precise conditions that control the
validity of the CLE (to be reviewed in Sec. II), he rehabilitated
it as a well-founded approach to approximating stochastic dy-
namics described by the CME (in the face of ostensible no-go
results like the Pawula theorem [7]), and directly inspired the
τ -leaping algorithm [8] and its many modifications [9–14] for
speeding up numerical simulations of biochemical reactions.

Path integrals offer a way to think about stochastic pro-
cesses that is somewhat independent from the usual differ-
ential equations perspective [15]. This means that—at least
in principle—there should be a way to translate Gillespie’s
derivation into path-integral language. Because path integrals
(along with associated technology like the renormalization
group [16–19]) are known to be useful for understand-
ing coarse-grained descriptions of systems (e.g., effective
field theories [19,20]), such a translation should contribute

*john.j.vastola@vanderbilt.edu

meaningfully to our understanding of how to intelligently
coarse-grain biochemical systems.

In this paper, we show how Gillespie’s two conditions
translate to a path-integral-based derivation of the chemical
Langevin equation. Our approach here builds upon the path-
integral descriptions of Langevin/Fokker-Planck equations
described in Ref. [15]. We will proceed with little mathemat-
ical rigor (as is typical in physics), but with enough clarity
that our arguments could in principle be made mathematically
precise.

The paper is organized as follows. In Sec. II, we review
Gillespie’s derivation of the CLE. In Sec. III, we construct a
path-integral description of CME dynamics. In Sec. IV, we
apply Gillespie’s conditions to our path-integral formulation
to obtain the CLE, and we also discuss an alternative method
based on a large system volume argument. Finally, we discuss
consequences of our work for understanding coarse-grained
biochemical systems in Sec. V.

II. REVIEW OF GILLESPIE’S CHEMICAL LANGEVIN
EQUATION DERIVATION

In this section, we review Gillespie’s derivation [1] of
the chemical Langevin equation from the chemical master
equation. We use the same notation Gillespie used in his
paper, although we will not require that the same physical
assumptions (i.e., well-stirred, dilute chemicals in a fixed vol-
ume and at constant temperature) hold, because the derivation
does not depend on them.

Consider a system with N species and M reactions. Denote
the propensity function of the jth reaction by a j , and the
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corresponding stoichiometry vector by ν j . The chemical mas-
ter equation reads

∂P(n, t )

∂t
=

M∑
j=1

a j (n − ν j )P(n − ν j, t ) − a j (n)P(n, t ), (1)

where P(n, t ) is the probability that the state of the system is
n = (n1, ..., nN ) ∈ NN at time t .

Gillespie’s derivation requires the existence of a timescale
τ for which the following two conditions hold:

(i) The propensity functions do not change their values
appreciably,

i.e., a j (n(t )) ≈ a j (n(t ′)) for all j and all t ′ ∈ [t, t + τ ].
(ii) The average number of firings of each reaction over a

time τ is much larger than 1.
Due to their connection with the τ -leaping algo-

rithm [8–14] for approximately simulating CME dynamics,
Gillespie later called these the first leap condition and the sec-
ond leap condition [21]. They are in practice easily satisfied
in the case of large molecule numbers, and they are exactly
satisfied in the thermodynamic limit [22], where the system
volume � is taken to infinity while keeping all concentrations
fixed.

Consider ni(t ), the number of molecules corresponding to
species i at time t . It changes in a small time �t according to

ni(t + �t ) = ni(t ) +
M∑

j=1

ν jiKj (a j,�t ), (2)

where ν ji is the ith component of the stoichiometry vector ν j

(i.e., the change in number of species i due to reaction j firing
once), and Kj (a j,�t ) is a random variable that describes the
number of times reaction j fires in �t .

For an arbitrary CME and arbitrary length of time �t ,
Kj might be taken from a complicated distribution. But if
condition (i) holds in a length of time τ , each reaction fires
independently of each other reaction, because no reactions
significantly change any propensity functions. Because (by
definition) the probability of reaction j firing in an infinites-
imal time dt is a j (n(t ))dt , and because that probability will
not significantly change during the time length τ , the number
of times reaction j fires in τ is well-approximated as a Poisson
random variable with mean aj (n(t ))τ , which we will denote
by P j{a j (n(t ))τ }.

This means that when condition (i) holds we can write the
time evolution of ni(t ) over a length of time τ as

ni(t + τ ) = ni(t ) +
M∑

j=1

ν jiP j{a j (n(t ))τ }. (3)

This equation is the basis for the τ -leaping approach first
described by Gillespie in 2001 [8], and later modified and
extended by himself and others [9–14].

If condition (ii) holds, then the average number of times
reaction j fires in τ (i.e., a j (n(t ))τ ) is much larger than 1,
so the Poisson random variables are well-approximated by
normal random variables:

P j{a j (n(t ))τ } ≈ N j{a j (n(t ))τ, a j (n(t ))τ }, (4)

where N j{a j (n(t ))τ, a j (n(t ))τ } is a normal random variable
with mean and variance both equal to aj (n(t ))τ . If we also
note that each normal random variable can be decomposed as

N j{a j (n(t ))τ, a j (n(t ))τ }
= a j (n(t ))τ + √

a j (n(t ))τ N j (0, 1), (5)

then we can write the time evolution of ni(t ) in a time τ as

ni(t + τ ) = ni(t ) +
M∑

j=1

ν jia j (n(t ))τ

+
M∑

j=1

ν ji

√
a j (n(t ))τ N j (0, 1). (6)

Because this equation has the form of an Euler-Maruyama
time step, we can identify the dynamics of the system on the
timescale τ with the set of N stochastic differential equations
(SDEs)

ẋi =
M∑

j=1

ν jia j (x) +
M∑

j=1

ν ji

√
a j (x) � j, (7)

where the � j are M independent Gaussian white noise terms,
and where we have relabeled each ni as xi to emphasize that
we are now working with continuous variables.

Our chemical Langevin equation corresponds to a chemical
Fokker-Planck equation

∂P(x, t )

∂t
=

N∑
i=1

− ∂

∂xi

⎡
⎣

⎛
⎝ M∑

j=1

ν jia j (x)

⎞
⎠P(x, t )

⎤
⎦

+ 1

2

N∑
i=1

N∑
i′=1

∂2

∂xi∂xi′

⎡
⎣

⎛
⎝ M∑

j=1

ν jiν ji′a j (x)

⎞
⎠P(x, t )

⎤
⎦,

(8)

which serves an approximation to the CME [Eq. (1)]. As
Gillespie notes, this is exactly what one would get from trun-
cating the Kramers-Moyal expansion of the CME at second
order, so his derivation in some sense justifies the naive one.

The CLE [Eq. (7)], and the associated chemical Fokker-
Planck equation [Eq. (8)] describing how the system’s prob-
ability density will evolve in time, are not without prob-
lems. They generically predict negative concentrations [23]
(although the hope is that the system has a negligibly small
probability of occupying these states, and this is often borne
out in practice), can be inaccurate for systems far from equi-
librium [24], may not always exhibit multistability when the
CME is multistable [25], and can give rise to nonphysical
probability currents at equilibrium [26].

Despite these shortcomings, utilizing the CLE can help
speed up simulations of CME dynamics when some species
have large molecule numbers [27–30] or when there is a
clear separation of timescales [31–33]. Moreover, alternative
schemes like the deterministic reaction rate equations and the
linear noise approximation [6] can profitably be viewed as
approximations to the CLE [34], and moment-closure approx-
imations have comparable accuracy [35].
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The CLE, and Langevin equations more generally, have
become standard approaches to modeling noisy gene regu-
lation [36–40]. They have also been used to analyze noise-
driven oscillations [41], model intracellular calcium dynam-
ics [42–44], study ion-channel gating [45], and understand
spiking neurons [46]. While only approximate, the CLE is
unquestionably useful.

III. PATH-INTEGRAL FORMULATION OF
CME DYNAMICS

Although path integrals [47] are most well-known in the
context of quantum mechanics and quantum field theory
[19,48–52], they have also proven useful for understand-
ing classical stochastic phenomena like Brownian motion
[53–55], conformational transitions [56–58], quantitative fi-
nance [50,59,60], population dynamics [61–65], neuron
firing [66–72], gene regulation [36,73–77], and chemical
kinetics [78–82].

In this section, we will develop a straightforward path-
integral formulation of chemical master equation dynamics.
Our path integral is constructed to closely resemble the for-
malism we used to describe SDE/Fokker-Planck dynamics
in Ref. [15]. To our knowledge, it is original, although cer-
tain aspects also resemble the approach used by Lazarescu
et al. [83]. The approach presented in this section is somewhat
distinct from the often used Doi-Peliti approach [84–87],
which involves integrating over so-called coherent states and
yields integrals instead of sums.

A. States and operators

Our main objective is to solve the CME, Eq. (1). Instead of
solving it directly, we will solve a related problem phrased
in terms of states and operators in a certain Hilbert space;
this allows us to construct a path integral just as one does in
quantum mechanics.

Consider an infinite-dimensional Hilbert space spanned by
the |n〉 vectors (where n = (n1, ..., nN ) ∈ NN ), in which an
arbitrary state |φ〉 is written

|φ〉 =
∞∑

n1=0

· · ·
∞∑

nN =0

c(n)|n〉, (9)

for some generally complex-valued coefficients c(n). To ease
notation, we will write

∑
n

:=
∞∑

n1=0

· · ·
∞∑

nN =0

, (10)

so that an arbitrary state reads

|φ〉 =
∑

n

c(n)|n〉. (11)

Define an inner product in this space by

〈m|n〉 = δmn, (12)

for all basis vectors |m〉 and |n〉, so that the inner product of
two arbitrary states reads

〈φ2|φ1〉 =
∑

n

c∗
2(n)c1(n). (13)

Using the inner product defined by Eqs. (12) and (13), we can
show that there is a resolution of the identity

1 =
∑

n

|n〉〈n|, (14)

since 〈n|φ〉 = c(n). Define the state operators n̂i by

n̂i|n〉 := ni|n〉, (15)

for all i = 1, ..., N . We will associate any function f (n) =
f (n1, ..., nN ) with the operator f (n̂), whose action on a basis
vector |n〉 is

f (n̂)|n〉 := f (n̂1, ..., n̂N )|n〉, (16)

where there is no operator ordering ambiguity because the
n̂i all commute with one another. Also define the propensity
function operators â j via

â j |n〉 := a j (n)|n + ν j〉, (17)

for all j = 1, ..., M, where ν j denotes the stoichiometry vector
of the jth reaction.

B. Generating function and equation of motion

In the spirit of Peliti [86], define the generating function

|ψ (t )〉 :=
∑

n

P(n, t )|n〉, (18)

where, as in the previous section, P(n, t ) is the probability that
the state of the system is n = (n1, ..., nN ) at time t . Note that

∂|ψ〉
∂t

=
∑

n

∂P(n, t )

∂t
|n〉

=
∑

n

⎡
⎣ M∑

j=1

a j (n − ν j )P(n − ν j, t )− aj (n)P(n, t )

⎤
⎦|n〉

=
∑

n

M∑
j=1

a j (n)P(n, t )|n + ν j〉

−
∑

n

M∑
j=1

a j (n)P(n, t )|n〉, (19)

where we have reindexed the left sum in the last step. Now we
have

∂|ψ〉
∂t

=
∑

n

⎡
⎣ M∑

j=1

a j (n)|n + ν j〉 − a j (n)|n〉
⎤
⎦P(n, t )

=
∑

n

⎡
⎣ M∑

j=1

â j |n〉 − a j (n)

⎤
⎦P(n, t )|n〉

=
⎡
⎣ M∑

j=1

â j − a j (n̂)

⎤
⎦|ψ〉. (20)

If we define the operator

Ĥ :=
M∑

j=1

â j − a j (n̂), (21)

032417-3



JOHN J. VASTOLA AND WILLIAM R. HOLMES PHYSICAL REVIEW E 101, 032417 (2020)

which we will call (in analogy with quantum mechanics) the
Hamiltonian, then we can write the equation describing the
time evolution of the generating function as

∂|ψ〉
∂t

= Ĥ |ψ〉. (22)

It is this equation that we will solve instead of the CME; since
〈n|ψ (t )〉 = P(n, t ), a solution to the CME can be extracted
out of a solution to this equation.

C. Deriving the CME path integral

The formal solution to Eq. (22) is

|ψ (t f )〉 = eĤ (t f −t0 )|ψ (t0)〉. (23)

At this point (following the usual procedure for deriving path
integrals [15]), we write the length of time (t f − t0) as T �t
for some large number of time steps T , split the propagator
into many pieces, and insert many resolutions of the identity:

|ψ (t f )〉 = eĤ�t · · · eĤ�t |ψ (t0)〉
=

∑
n0

· · ·
∑
nT

|nT 〉〈nT |eĤ�t |nT −1〉 · · · 〈n1|eĤ�t |n0〉

× 〈n0||ψ (t0)〉. (24)

We are specifically interested in the transition probability
P(n f , t f ; n0, t0). To obtain an expression for it, note that if
|ψ (t0)〉 = |n0〉, then P(n f , t f ; n0, t0) = 〈n f |ψ (t f 〉. Hence, we
have

P(n f , t f ; n0, t0)=
∑

n1

· · ·
∑
nT−1

〈nT |eĤ�t |nT−1〉 · · · 〈n1|eĤ�t |n0〉,

(25)

where nT = n f . Now we just need to evaluate these matrix
elements and put them together. Choose �t sufficiently small
so that

〈nk|eĤ�t |nk−1〉 ≈ 〈nk|1 + Ĥ�t |nk−1〉
= δnk ,nk−1 + 〈nk|Ĥ |nk−1〉�t . (26)

We will take �t → 0 at the end of the calculation, so this
equality will hold exactly. Using the specific form of Ĥ
[Eq. (21)], we have

〈nk|Ĥ |nk−1〉 = 〈nk|
M∑

j=1

â j − a j (n̂)|nk−1〉

=
M∑

j=1

〈nk|â j − a j (n̂)|nk−1〉

=
M∑

j=1

a j (nk−1)[〈nk|nk−1 + ν j〉 − 〈nk|nk−1〉]

=
M∑

j=1

a j (nk−1)[δnk ,nk−1+ν j − δnk ,nk−1 ]. (27)

Recall that the usual integral representation of the Dirac δ

function reads

δm,n =
∫

dp
(2π )N

e−ip·(m−n), (28)

where dp = d p1 · · · d pN and each pi is integrated over the
whole real line. Using this representation, 〈nk|Ĥ |nk−1〉 be-
comes

∫
dpk

(2π )N
e−ipk ·(nk−nk−1 )

⎧⎨
⎩

M∑
j=1

[eipk ·ν j − 1]a j (nk−1)

⎫⎬
⎭, (29)

where we have labeled the integration variable pk to antici-
pate there being one integral for each matrix element in the
final answer. Using Eq. (26), 〈nk|eĤ�t |nk−1〉 is approximately
equal to

∫
dpk

(2π )N
e−ipk ·(nk−nk−1 )

⎧⎨
⎩1 + �t

M∑
j=1

[eipk ·ν j − 1]a j (nk−1)

⎫⎬
⎭.

(30)
Noting that �t is small enough for the bracketed expression
to be approximately equal to the corresponding exponential,
our final expression for 〈nk|eĤ�t |nk−1〉 becomes∫

dpk

(2π )N
e−ipk ·(nk−nk−1 )+�t

∑M
j=1[exp(ipk ·ν j )−1]a j (nk−1 ). (31)

Using Eqs. (25) and (31), we find that P(n f , t f ; n0, t0) can be
written as the path integral

P = lim
T →∞

∑
n1

· · ·
∑
nT −1

∫
dp1

(2π )N
· · ·

∫
dpT

(2π )N
exp

⎧⎨
⎩

T∑
k=1

− ipk

·(nk − nk−1) + �t
M∑

j=1

[eipk ·ν j − 1]a j (nk−1)

⎫⎬
⎭, (32)

which resembles the Martin-Siggia-Rose-De Dominicis
(MSRJD) path-integral description [88–92] of the Fokker-
Planck equation. Again, while the Doi-Peliti path integral
involves integrating over coherent states, this path integral
involves integrating over every possible discrete path through
NN that goes from n0 to n f .

Although our primary interest in this paper is to use
Eq. (32) to derive the CLE, this path-integral representation
of the CME has utility in its own right. See Appendix A for
how it can be used to exactly solve for time-dependent tran-
sition probabilities associated with simple chemical reaction
systems.

IV. PATH-INTEGRAL DERIVATION OF THE CHEMICAL
LANGEVIN EQUATION

In this section, we reinterpret Gillespie’s derivation of the
CLE in the context of stochastic path integrals and show
explicitly how his two conditions translate in the path-integral
context. Our central tool will be the Euler-Maclaurin for-
mula [93,94], which allows one to approximate sums as
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integrals (plus correction terms). It says that

b∑
n=a

f (n) ∼
∫ b

a
f (x) dx + f (b) + f (a)

2

+
∞∑

k=1

B2k

(2k)!
[ f (2k−1)(b) − f (2k−1)(a)], (33)

where B2k is the (2k)th Bernoulli number, and the “∼” symbol
is to indicate that we are to interpret the right-hand side as an
asymptotic expansion (generically, the infinite sum may not be
convergent, but retaining a finite number of terms still usually
provides a good approximation to the left-hand side).

The Euler-Maclaurin formula is not an unfamiliar tool
in chemical physics, given that it is often used to approxi-
mate partition functions [95–97] to good accuracy in certain
regimes (e.g., the high temperature limit). It has also been
used for other interesting purposes, like computing Fermi-
Dirac integrals [98], and proving the asymptotic equivalence
of two descriptions of Coulombic systems in certain poten-
tials [99].

Roughly speaking, we will proceed as follows. Condition
(i) will allow us to approximate each sum in Eq. (32) as
an integral, and to argue that the correction terms are small;
meanwhile, condition (ii) will allow us to Taylor expand the
exp(ipk · ν j ) terms in Eq. (32) to second order in the momenta
pk . The result of these two approximations will be a MSRJD
path integral, which we know from studies of stochastic
path integrals [15] to be equivalent to a system of Langevin
equations. In particular, it will be equivalent to Eq. (7), the
CLE.

A. Only some paths satisfy Gillespie’s conditions

Gillespie’s first condition (see Sec. II) says that, in a period
of time τ , the propensity functions do not change appreciably.
Upon some reflection, we realize that this cannot be true for
all possible trajectories the system might have, assuming the
propensity functions have some state-dependence (which, in
general, they do). In principle, it is possible that the number of
molecules of some species jumps between 1 and 10100, wildly
and irregularly, so that there does not exist any timescale on
which the propensity functions do not change appreciably. In-
deed, all sorts of crazy trajectories are possible in principle—
but they are overwhelmingly unlikely in practice.

While there certainly exist crazy and pathological paths
for which it is hard or impossible to find a timescale τ that
satisfies Gillespie’s first condition, the requirement is not so
stringent for most of the trajectories the system might take. In
other words, we will suppose that the first condition is satisfied
for the dominant paths rather than for all paths.

A similar argument applies to the second condition. This
means that, in applying our two conditions, we will no longer
be summing over all possible paths [cf. Eq. (32)]. Instead, we
will be summing over all possible paths that satisfy the two
conditions, a collection which we will assume includes the
dominant or most likely paths.

If we are not summing over all possible paths, then what
does our region of integration look like? To understand this,
it is helpful to consider the simple case of a CME with one

species and one reaction. Label the number of that species
by n, and the propensity function of the single reaction by a.

Imagine starting the system in the state with n0 molecules
and thinking about where it will go (i.e., all possible states n1)
in the next time length τ . For the dominant paths, we as-
sume that the difference |a(n1) − a(n0)| is small, so that the
propensity function did not change appreciably. But what do
we mean by “appreciably”?

In a paper showing his two conditions hold in the thermo-
dynamic limit [22], Gillespie assumed that his first condition
meant

|a(n1) − a(n0)|
a(n0)

� 1, (34)

i.e., that the change in the propensity function on the timescale
τ is negligible compared to the size of its original value.
This matches the intuition we have about what constitutes a
negligible change in population size: for example, if the pop-
ulation size changed by 100 molecules, but the total number of
molecules is on the order of 105, then we imagine that change
not to be noticeable.

Here, we can be a little bit more precise than Eq. (34).
We generally assume that our propensity functions are nicely
behaved—in particular, that they are continuous, that they
are infinitely differentiable, and that we may freely Taylor
expand them. That is, we assume the aj are analytic functions
throughout our domain. Because most propensity functions of
interest are polynomials (or at worst, rational functions like
Hill functions), and because expressions like the Kramers-
Moyal expansion already assume the aj are smooth, these
assumptions do not turn out to be particularly strong.

Suppose a(n0) > 0, which is always true in the regime we
care about, since we will usually need n sufficiently large;
generic monomolecular and bimolecular propensity functions
have zeros at n = 0 and n = 1. Because a is continuous, for
any ε > 0 we can find a δ > 0 such that

|a(n1) − a(n0)| < εa(n0), (35)

provided |n1 − n0| < δ. For the correction terms that arise
from applying the Euler-Maclaurin formula [Eq. (33)] to be
negligible, we also want to bound the derivatives of a in a
similar fashion.

Analogous conditions apply in the general case, where the
a j may be functions of more than one variable. The moral
of the story is that, because of the assumed smooth behavior of
the propensity functions, we can find a region where they (and
their derivatives) do not vary appreciably. In the simple one-
dimensional case, this is an ‘interval’ [n0 − δ−

0 , n0 + δ+
0 ] ⊆ N

(where we let δ−
0 
= δ+

0 in general since we need n0 − δ−
0 and

n0 + δ+
0 to both be natural numbers); in general, this is the

intersection of an open set with a lattice: U0(δ) ∩ NN ⊆ NN .
For convenience, we will use U0 to denote both the open set
and its lattice intersection.

Hence, for a one-dimensional system, we restrict ourselves
to paths

∞∑
n1=0

· · ·
∞∑

nN−1=0

→
n0+δ+

0∑
n1=n0−δ−

0

· · ·
nN−2+δ+

N−2∑
nN−1=nN−2−δ−

N−2

, (36)
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where the δ+
i and δ−

i , as in the discussion above, are chosen
so that the propensity functions and their derivatives vary
within acceptable bounds. For an arbitrary CME, we restrict
ourselves to paths

∑
n1

· · ·
∑
nT −1

→
∑

n1∈U0

· · ·
∑

nT −1∈UT −2

, (37)

where the sets Ui ⊆ NN are chosen similarly.

B. Coarse-graining time

There is another “philosophical” point we need to address.
Earlier, we imagined breaking up the propagator into T time
steps of length �t , and choosing T to be large enough (or
equivalently, �t to be small enough) that each piece of the
propagator was well-approximated by its first-order Taylor
expansion [cf. Eq. (26)]. However, Gillespie’s two conditions
only apply on the “coarser” timescale τ . How do we go from
time steps of size �t to time steps of size τ in Eq. (32)?

There are two straightforward ways we can imagine. The
simpler way is to say that, since we are in the business
of making approximations anyway, we may as well make
the approximation that Eq. (32) is valid on the timescale τ ,
and that the terms we neglected when Taylor expanding the
propagator do not matter much in the regime where Gillespie’s
conditions apply.

But there is a more intellectually honest way to proceed.
Suppose we originally broke the propagator into S · T time
steps, for some natural number S large enough for our deriva-
tion to go through without issue. This means that the time
step in our path integral has size �t := t/(S · T ). We want
to rewrite our path integral in terms of a “macroscopic”
timescale τ := t/T , which corresponds to breaking up the
overall time t into T time steps of length τ .

Schematically, this means we want to make the following
identifications:

n0
�t−→ n1

�t−→ · · · �t−→ nS : n0
τ−→ n1

nS
�t−→ nS+1

�t−→ · · · �t−→ n2S : n1
τ−→ n2

...

nS·(T −1)
�t−→ nS·(T −1)+1

�t−→ · · · �t−→ nS·T : nT −1
τ−→ nT . (38)

The argument of the exponential in Eq. (32) reads

S·T∑
k=1

−ipk · (nk − nk−1) + �t
M∑

j=1

[eipk ·ν j − 1]a j (nk−1). (39)

Consider the following small piece of this expression:

S·T∑
k=1

[eipk ·ν j − 1]a j (nk−1). (40)

Assuming (on the dominant paths) that the propensity func-
tion a j only changes appreciably on the timescale τ = S�t ,

we can make the approximation that

a j (n0) ≈ a j (n1) ≈ · · · ≈ a j (nS−1)

a j (nS ) ≈ a j (nS+1) ≈ · · · ≈ a j (n2S−1)

...

a j (nS·(T −1)) ≈ a j (nS·(T −1)+1) ≈ · · · ≈ a j (nS·T −1)

(41)

and rewrite Eq. (40) in terms of
a j (n0), a j (nS ), a j (n2S ), ..., a j (nS·T ) only. This means that the
only places the “intermediate” time steps (e.g., n1, ..., nS−1,
or nS+1, ..., n2S−1) will appear are in the piece that reads

S·T∑
k=1

−ipk · (nk − nk−1). (42)

Happily, this means that all of the intermediate time steps can
be summed over. For example,

∑
n1

· · ·
∑
nS−1

exp

{
S∑

k=1

−ipk · (nk − nk−1)

}

≈ δ(p1 − p2)δ(p2 − p3) · · · δ(pS−1 − pS ), (43)

where the right-hand side is approximate because, due to our
restriction of the sum domain in the previous section, the sum
representation of the Dirac δ function

1

(2π )N

∑
n

exp{−in · (p − p′)} = δ(p − p′) (44)

only approximately applies. After summing over all interme-
diate time steps and integrating out extraneous pk using the δ

functions that appear, Eq. (40) reads

T∑
k=1

−ipk · (nk − nk−1) + S�t
M∑

j=1

[eipk ·ν j − 1]a j (nk−1)

=
T∑

k=1

−ipk · (nk − nk−1) + τ

M∑
j=1

[eipk ·ν j − 1]a j (nk−1).

(45)

Hence, using Gillespie’s first condition, we have successfully
gone from a path integral with timescale �t to a path integral
with a “coarser” timescale τ .

C. Applying condition 1

In this section, we will apply condition (i) to convert the
sums in Eq. (32) to integrals. After restricting our domain to
the dominant paths (see Sec. IV A) and coarse-graining time
(see Sec. IV B), our current path-integral description of the
CME reads

P ≈
∑

n1∈U0

· · ·
∑

nT −1∈UT −2

∫
dp1

(2π )N
· · ·

∫
dpT

(2π )N
exp{−Sτ },

(46)
where we recall that the sets U0, ...,UT −2 cover all trajectories
on which Gillespie’s two conditions apply, and where we
have defined the function (which we can call the “action,” in
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analogy with quantum mechanics)

S :=
T∑

k=1

ipk ·
(

nk − nk−1

τ

)
−

M∑
j=1

[eipk ·ν j − 1]a j (nk−1)

(47)
to ease notation. We will proceed using the Euler-Maclaurin
formula [Eq. (33)]. As a starting point, consider Eq. (46) in
one-dimension:

P ≈
n0+δ+

0∑
n1=n0−δ−

0

· · ·
nN−2+δ+

N−2∑
nN−1=nN−2−δ−

N−2

∫
d p1

2π
· · ·

∫
d pT

2π
exp{−Sτ },

(48)
where the δ−

i and δ+
i are as described in Sec. IV A. Using the

Euler-Maclaurin formula, we have

n0+δ+
0∑

n1=n0−δ−
0

exp{−Sτ } ≈
∫ n0+δ+

0

n0−δ−
0

exp{−Sτ } dn1

+ e−S(n0+δ+
0 )τ + e−S(n0−δ−

0 )τ

2

+
∞∑

k=1

B2k

(2k)!

d2k−1

dn2k−1
1

[e−Sτ ]
n0+δ+

0

n0−δ−
0
. (49)

Now we need to argue that the correction terms can safely be
neglected. Define δ := δ+

0 + δ−
0 . Because the propensity func-

tions don’t change vary much in the interval [n0 − δ−
0 , n0 +

δ+
0 ] (by Gillespie’s first condition), the integral term is roughly

exp{−S(n0)τ }δ. (50)

Meanwhile, the next term is roughly

exp{−S(n0)τ }, (51)

which should be negligible compared to the first as long
as δ � 1. This should certainly be true; if δ ∼ 1, then our
conditions are either too strict or we are in a regime with too
small molecule numbers.

Because the propensity functions a j do not change much
(and because the a j are nicely behaved, usually monotonic
functions in the regime we care about), they are approximately
“flat.” This means that their derivatives a(2k−1)

j are small. For
example,

d

dn1
[e−Sτ ] =

⎡
⎣i(p2 − p1) + τ

M∑
j=1

[eipkν j − 1]a′
j

⎤
⎦e−Sτ ,

(52)
so

d

dn1
[e−Sτ ]

n0+δ+
0

n0−δ−
0

= τ

M∑
j=1

[eipkν j − 1][a′
j (n0 + δ+

0 )e−S(n0+δ+
0 )τ

− a′
j (n0 − δ−

0 )e−S(n0−δ−
0 )τ ]

≈ τe−S(n0 )τ
M∑

j=1

[eipkν j − 1][a′
j (n0 + δ+

0 )

− a′
j (n0 − δ−

0 )]

≈ 0. (53)

In summary, we have

n0+δ+
0∑

n1=n0−δ−
0

exp{−Sτ } ≈
∫ n0+δ+

0

n0−δ−
0

exp{−Sτ } dn1, (54)

which means we have successfully converted a sum into an
integral. Apply this argument many more times to obtain

n0+δ+
0∑

n1=n0−δ−
0

· · ·
nT −2+δ+

T −2∑
nT −1=nT −2−δ−

T −2

exp{−Sτ }

≈
∫ n0+δ+

0

n0−δ−
0

dn1 · · ·
∫ nT −2+δ+

T −2

nT −2−δ−
T −2

dnT −1 exp{−Sτ }. (55)

A similar argument applies to the N species path integral
[Eq. (46)]; the only difference is that the Euler-Maclaurin
formula must be applied N times for each time step, because
we would like to convert N sums to an N-variable integral.

Alternatively, one can argue using the appropriate many
sum generalization of the Euler-Maclaurin formula [Eq. (33)].
There is some literature on generalizations of it to sums over
polytopes [100–102] (schematically, shapes in N-dimensional
space whose vertices we can imagine as living in ZN ). The
main challenge for this approach would be to show that
satisfying Gillespie’s first condition corresponds to satisfying
the requirements associated with the approximation being
accurate (which are somewhat more technical than those for
the single sum Euler-Maclaurin formula).

The end result of all this is

P ≈
∫

U0

dx1 · · ·
∫

UT−2

dxT−1

∫
dp1

(2π )N
· · ·

∫
dpT

(2π )N
exp{−Sτ },

(56)

where we have relabeled each nk as xk to (as in Sec. II) empha-
size that we are now working with continuous variables. We
remark that, if not for the bounds, we would have a Kramers-
Moyal path integral (see Sec. V of our earlier paper [15]).

D. Applying condition 2

Consider the terms in the action S [Eq. (47)] that look like

[eipk ·ν j − 1]a j (xk−1)τ. (57)

Condition (ii) tells us that, for the dominant paths,
a j (xk−1)τ � 1. In particular, we will assume that it is so large
that Taylor expanding the term it is multiplied by will have a
negligible effect on the overall value,1 i.e.,

[eipk ·ν j − 1]a j (xk−1)τ

≈
[

ipk · ν j − 1

2

N∑

=1

N∑

′=1

p

k p
′

k ν j
ν j
′

]
a j (xk−1)τ, (58)

1See Appendix B for a somewhat more rigorous argument justify-
ing this approximation.
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where p

k is the 
 th component of the vector pk . Thus, we

finally obtain

S ≈
T∑

k=1

ipk ·
⎡
⎣xk − xk−1

τ
−

M∑
j=1

ν ja j (xk−1)

⎤
⎦

+ 1

2

N∑

=1

N∑

′=1

M∑
j=1

p

k p
′

k ν j
ν j
′a j (xk−1),

(59)

which looks just like the action for the MSRJD path integral
(see Sec. V of Ref. [15]) corresponding to the chemical
Fokker-Planck equation [Eq. (8)]. Our final result for the
whole path integral reads

P ≈
∫

U0

dx1 · · ·
∫

UT −2

dxT −1

∫
dp1

(2π )N
· · ·

∫
dpT

(2π )N

× exp

⎧⎨
⎩−

T∑
k=1

⎡
⎣ipk ·

⎛
⎝xk − xk−1

τ
−

M∑
j=1

ν ja j (xk−1)

⎞
⎠

+ 1

2

N∑

=1

N∑

′=1

M∑
j=1

p

k p
′

k ν j
ν j
′a j (xk−1)

⎤
⎦τ

⎫⎬
⎭, (60)

which looks like the usual Fokker-Planck path integral but
with restricted integration bounds.

The appearance of Eq. (60) can be compacted somewhat if
we define the diffusion tensor D

′ :

D

′ (x) := 1

2

M∑
j=1

ν j
ν j
′a j (x). (61)

At the CLE/Fokker-Planck level, the diffusion tensor captures
all information about a system’s noise. It must be positive
semidefinite for the Fokker-Planck equation and its corre-
sponding path integral to make sense [103,104].

Finish the derivation by enlarging our integration domain
as much as possible (while keeping the diffusion tensor pos-
itive semidefinite), assuming that permitting these additional
paths does not substantially contribute to transition probabili-
ties, since they were small enough to neglect in the first place.
In general, we do not expect that the appropriate domain for
our new continuous variables will be [0,∞)N , despite the fact
that our original domain was NN . For example, the chemical
Langevin equation [1] for the birth-death process (with birth
rate k, death rate γ , and steady state mean μ := k/γ ) reads

ẋ = k − γ x +
√

k + γ x η(t ) (62)

and is naturally defined on [−μ,∞), because there is always
some nonzero probability that the noise term will push the
system into negative concentrations while its magnitude is
greater than or equal to zero, i.e., when k + γ x = γ (μ+x)�0.

E. Comparison with the system volume approach

We have shown in the previous few sections how Gille-
spie’s derivation works in a path-integral context. Because
Gillespie himself [1] compared his approach to ones which

rely upon the largeness of the system volume �, it is inter-
esting to do that here also. Let us translate the typical system
volume approach into path-integral language and see how it
compares with the approach we described earlier.

Consider again a CME with N species and M reactions
[Eq. (1)], but this time with the additional physical context that
the chemicals interact inside a very large volume �. Suppose
we rewrite the CME in terms of concentration variables xi :=
ni/� for all i = 1, ..., N . The change in variables will lead to
the probability density function P(n, t ) increasing by a factor
of �N :

P(n, t )dn = �N P(n, t )dx = P(x, t )dx

⇒ P(x, t ) = �N P(n, t ). (63)

Gillespie used rigorous microphysical arguments [1,105–107]
to show that the volume-dependence of the propensity func-
tions for monomolecular, bimolecular, and trimolecular reac-
tions goes like

a j (n) = � ã j (x), (64)

where the adjusted propensity functions ã j are volume-
independent. Using Eqs. (63) and (64), our original CME path
integral [Eq. (32)] can be rewritten as

P = lim
T →∞

�N
∑

n1

· · ·
∑
nT −1

∫
dp1

(2π )N
· · ·

∫
dpT

(2π )N

× exp

⎧⎨
⎩

T∑
k=1

−i� pk · (xk − xk−1)

+��t
M∑

j=1

[eipk ·ν j − 1]ã j (xk−1)

⎫⎬
⎭. (65)

Now add in T − 1 factors of �N/�N :

P = lim
T →∞

[
1

�N

∑
n1

]
· · ·

[
1

�N

∑
nT −1

]

×
∫ (

�

2π

)N

dp1 · · ·
∫ (

�

2π

)N

dpT

× exp

{
T∑

k=1

−i� pk · (xk − xk−1)

+��t
M∑

j=1

[eipk ·ν j − 1]ã j (xk−1)

⎫⎬
⎭. (66)

Riemann sums will play the role that the Euler-Maclaurin
formula did (i.e., converting sums to integrals) in our earlier
derivation. Recall that the (right endpoint) Riemann sum for a
function f on [0, b] reads [108]

∫ b

0
f (x)dx ≈

N∑
i=0

f (i�x)�x, (67)
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where �x = b/N . If we take b → ∞ and N → ∞ in such a
way that �x remains constant, then we can write∫ ∞

0
f (x)dx ≈

∞∑
i=0

f (i�x)�x. (68)

The corresponding N-dimensional result is∫ ∞

0
dx1 · · ·

∫ ∞

0
dxN f (x)

≈
∞∑

i1=0

· · ·
∞∑

iN =0

f (i1�x, · · · , iN�x)(�x)N . (69)

Since the inverse system volume 1/� seems to play the role
of �x in Eq. (66), we can use this Riemann sum result to
approximate each sum as

1

�N

∑
n

≈
∫ ∞

0
dx1 · · ·

∫ ∞

0
dxN , (70)

so that our path integral is now

P = lim
T →∞

∫
dx1 · · ·

∫
dxT −1

×
∫ (

�

2π

)N

dp1 · · ·
∫ (

�

2π

)N

dpT

× exp

{
T∑

k=1

−i� pk · (xk − xk−1)

+��t
M∑

j=1

[eipk ·ν j − 1]ã j (xk−1)

⎫⎬
⎭. (71)

Now we can argue just as we did in Sec. IV D. Because we
are taking � to be extraordinarily large in the thermodynamic
limit,

�[eipk ·ν j − 1]ã j (xk−1)τ

≈ �

[
ipk · ν j − 1

2

N∑

=1

N∑

′=1

p

k p
′

k ν j
ν j
′

]
ã j (xk−1)τ,

(72)

i.e., � is so large that above term does not change much in
value when Taylor expanded to second order in pk . Finally,
we have

P = lim
T →∞

∫
dx1 · · ·

∫
dxT −1

×
∫ (

�

2π

)N

dp1 · · ·
∫ (

�

2π

)N

dpT

× exp

⎧⎨
⎩−�

T∑
k=1

⎡
⎣ipk ·

⎛
⎝xk − xk−1

�t
−

M∑
j=1

ν j ã j (xk−1)

⎞
⎠

+ 1

2

N∑

=1

N∑

′=1

M∑
j=1

p

k p
′

k ν j
ν j
′ ã j (xk−1)

⎤
⎦�t

⎫⎬
⎭, (73)

which is the same as the result from Sec. IV D [cf. Eq. (59)]
but with additional factors of �. It also exactly matches the
system volume MSRJD path integral for the Fokker-Planck
equation (cf. Eq. (94) in Sec. V of Ref. [15]). In other words,
we have indeed derived a path-integral equivalent to a set
of Langevin equations/a Fokker-Planck equation. Moreover,
it is equivalent to the same set of Langevin equations that
Eq. (59) is (as is easily seen after changing back from concen-
tration variables to the original number variables)—although
the integration bounds on the path integral are different
here.

Given that this approach was significantly simpler (in both
a technical and conceptual sense), why bother with Gillespie’s
derivation? There are a few good reasons.
• The approximations provided by Eqs. (68) and (69) are

more mathematically dubious than the Euler-Maclaurin for-
mula [Eq. (33)], which is well-studied and has precisely
expressed error bounds.

• The thermodynamic limit may not apply to most biochem-
ical systems of interest, given that molecule numbers are
often large but not overwhelmingly so, and that the system
volume (for example, of a cell) is not large enough to pre-
vent crowding [109–112] and boundary effects [113–115]
from being important.

• The system volume approach only applies when our CME
describes a well-stirred, dilute mix of chemicals held at
fixed temperature in a very large box—but the CLE is
known to be a useful approximate description of all sorts of
other stochastic systems (e.g., spiking neurons, fluctuating
population dynamics models, stock options). In these other
situations, there is no clear notion of a control parameter
analogous to �.

• The system volume approach misses the subtlety of
the integration bounds associated with the chemi-
cal Langevin/chemical Fokker-Planck equations; as we
pointed out at the end of the previous section, it is a
nontrivial issue that the domain of the approximating CLE
will generally not be [0,∞)N .

V. DISCUSSION

We constructed an original path-integral description of
the CME, and applied Gillespie’s conditions (suitably inter-
preted) to it to derive a path integral known to be equiva-
lent to the CLE. In some sense, the difference between the
system size approach and Gillespie’s approach to deriving
the CLE is the difference between approximating sums as
integrals via Riemann sums, and via the Euler-Maclaurin
formula. As discussed at the end of the previous section,
while both approximation techniques can be valid in the ap-
propriate circumstances, the Euler-Maclaurin formula is more
generally applicable and has better characterized correction
terms.

It is interesting to note that, although we began with an
exact path integral that involved taking the limit �t → 0
[Eq. (32)], we coarse-grained time to end up with a path
integral with fixed time step τ that does not get taken to zero
[Eq. (60)]. This leads to another sense in which the CLE is
only an approximate description, since a true CLE/Fokker-
Planck path integral (see Ref. [15]) also involves taking
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the limit �t → 0. However, the idea of a “macroscopic”
timescale was addressed by Gillespie himself in his original
paper [1]. There, he offered an analogy to current in an electric
circuit: We can freely write and manipulate the derivative
I := dq/dt , and think about the limit dt → 0, provided we
understand that we are not taking it to be so small that shot
noise effects start to matter.

Because our argument applied to each reaction/propensity
function separately, it can in principle be used construct
path integrals for hybrid systems. In other words, just as
Harris et al. [28–30] do, we can suppose that Gillespie’s two
conditions apply only to a subset of all reactions or species,
and construct a path integral in which some species/reactions
are treated CLE-style, while others are treated CME-style.
Indeed, there should be a path-integral way to view all
of the hybrid constructions—based on molecule numbers
or separations of timescales—referenced in Sec. II. These
path integrals could then be used to extract large deviation
results.

It is unclear if Gillespie’s conditions could be applied to the
Doi-Peliti path integral [84–87] to recover a CLE-equivalent
path integral. Part of the difficulty is that the Doi-Peliti
construction involves integrating over coherent states, which
contribute integrals over the whole real line in the expres-
sion for the propagator [86]; it is not necessarily straight-
forward to associate these with sums or integrals over state
space.

Although we only used the path-integral representation of
the CME constructed in Sec. III to derive the CLE, it can
also be used as a tool in its own right for the same purposes
other path-integral representations are often used for: namely,
finding exact solutions [116–118], constructing asymptotic
or perturbative approximations to transition probabilities and
moments [119], computing least action paths associated with
particular state transitions, and enabling a variational method
for numerically computing transition probabilities and least
action paths [70]. In cases where Gillespie’s first condition
applies, and the domain of the path integral can be restricted,
the numerical evaluation of Eq. (32) becomes even easier.
Though our argument does not offer a constructive prescrip-
tion for the restricted integration domains U0, ...,UT −2, one
can in principle bootstrap the path integral by running Gille-
spie algorithm simulations beforehand to estimate reasonable
domains.

VI. CONCLUSION

The chemical Langevin equation is usually derived using
Gillespie’s two conditions, or large system volume arguments;
as we described, both methods have clear path-integral ana-
logues. Our results suggest that path integrals offer a useful
and mathematically precise way of thinking about the rela-
tionship between different levels of approximation (e.g., CME
and CLE), and about coarse-graining biochemical models
more generally.
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APPENDIX A: SAMPLE PATH-INTEGRAL
CALCULATIONS

One can get a feel for a given path integral by using it to ex-
actly calculate transition probabilities for simple systems. In
this Appendix, we use the path integral described by Eq. (32)
to compute exact time-dependent transition probabilities for
a (i) pure birth process, a (ii) pure death process, and a
(iii) chemical birth-death process. For more information on
the chemical birth-death process, and for analogous path-
integral calculations that are valid in the limit where molecule
numbers can be treated as continuous, see Refs. [116,117].

These systems can also be solved using the Doi-Peliti path
integral, the most commonly used path-integral description of
the CME—see Vastola [118] for a guide. It is interesting to
note that the transition probability derivations presented in
this Appendix are simpler in some ways; for example, one
does not need to introduce coherent states or special scalar
products, and transition probabilities can be computed without
computing the generating function first.

The following path-integral calculations involve the eval-
uation of many contour integrals. The resolution of identity
introduced in Eq. (28), which leads to the “momentum”
integrals going from negative infinity to positive infinity,
yields contour integrals with an infinite number of poles. To
make these calculations somewhat simpler, we instead use the
equally valid resolution of the identity given by

δ(n1 − n2) =
∫ π

−π

d p

2π
e−ip(n1−n2 ) (A1)

in one dimension, and

δ(n1 − n2) =
∫ π

−π

· · ·
∫ π

−π

d p1 · · · d pN

(2π )N
e−ip·(n1−n2 ) (A2)

in more than one dimension. This means that our CME path
integral is still given by Eq. (32), but with the pk integrals all
going from −π to π .

1. The pure birth process

The pure birth process models a species that is randomly
created at some rate. It is characterized by the chemical
reaction

∅
k−→ X, (A3)

where k is the birth rate. This reaction corresponds to the CME

∂P(n, t )

∂t
= k[P(n − 1, t ) − P(n, t )], (A4)

where P(n, t ) is the probability that the system has n X
molecules at time t (with n ∈ {0, 1, 2, ...}). For this system,
our path integral for the transition probability P(n f , t ; n0, 0)
[cf. Eq. (32)] reads

P = lim
T →∞

∑
n1

· · ·
∑
nT −1

∫
d p1

2π
· · ·

∫
d pT

2π

× exp

{
T∑


=1

−ip
(n
 − n
−1) + k�t (eip
 − 1)

}
, (A5)
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where �t := t/T . First, since

−k�t
T∑


=1

= −kt, (A6)

the overall answer has a prefactor exp(−kt ). Next, organizing
terms by the n
, we have

ip1n0

− ipT n f + in1(p2 − p1) + in2(p3 − p2)

+ · · · + inT −1(pT − pT −1). (A7)

Each sum over n
 (for 
 = 1, ..., T − 1) just corresponds to
summing a geometric series:

∞∑
n
=0

[ei(p
+1−p
 )]n
 = 1

1 − ei(p
+1−p
 )
. (A8)

Now consider the integral over p1, which reads∫ π

−π

d p1

2π

eip1n0+k�teip1

1 − ei(p2−p1 )
. (A9)

Switching variables to z = eip1 , we have the contour integral∮
dz

2π i

zn0 ek�tz

z − eip2
, (A10)

whose integrand has a simple pole at eip2 . Although Cauchy’s
theorem does not technically apply in this case, since the
pole lies on the circular contour, we can imagine deforming
the contour or integrand slightly [e.g., by taking eip2 → (1 −
ε)eip2 ] so that Cauchy’s theorem does apply, allowing us to
evaluate the integral in the usual way.2 Doing so, we obtain

eip2n0+k�teip2
, (A11)

which indicates that the overall effect of doing the contour
integral was to implement the constraint that p1 = p2. Sim-
ilarly, the overall effect of doing the integral over p
 (for

 = 2, ..., T − 1), which schematically reads∫ π

−π

d p


2π

f (p
)

1 − ei(p
+1−p
 )
, (A12)

for some function f (p
), is to implement the constraint that
p
 = p
+1. Hence, after doing the integrals over p1, ..., pT −1,
we have ∫ π

−π

d pT

2π
e−ipT (n f −n0 )+kteipT

. (A13)

Define �n := n f − n0 and change variables to z = eipT . Then
we have ∮

dz

2π i

ektz

z�n+1
. (A14)

2These arguments can be made more rigorous if one wishes.
Because path integrals are somewhat mathematically dubious in
the first place, regularization techniques like these are required for
the integrals involved to be well-defined. Ultimately, the proof is “in
the pudding”: If we get the right answer, which can easily be verified
by substituting it directly into Eq. (A4), then these abuses can be
excused.

For �n < 0, this integral has no poles, so P(n f , t ; n0, 0) = 0
in that case. For �n � 0, a standard application of Cauchy’s
integral formula yields that the result is

1

�n!

d�n

dz�n
[ektz]z=0 = (kt )�n

�n!
. (A15)

Hence, including the prefactor e−kt , our result for the transi-
tion probability is

P(n f , t ; n0, 0) = (kt )�ne−kt

�n!
, (A16)

i.e., a Poisson distribution.

2. The pure death process

The pure death process models a species that randomly
degrades at some rate. It is characterized by the chemical
reaction

X
γ−→ ∅, (A17)

where γ is the death rate. This reaction corresponds to the
CME

∂P(n, t )

∂t
= γ [(n + 1)P(n + 1, t ) − nP(n, t )], (A18)

where P(n, t ) is the probability that the system has n X
molecules at time t (with n ∈ {0, 1, 2, ...}). This time, our path
integral for the transition probability P(n f , t ; n0, 0) reads

P = lim
T →∞

∑
n1

· · ·
∑
nT −1

∫
d p1

2π
· · ·

∫
d pT

2π

× exp

{
T∑


=1

−ip
(n
 − n
−1) + γ�t n
−1(e−ip
 − 1)

}
.

(A19)

The terms that involve n
 (for some 
 = 1, ..., T − 1) look like

in
[p
+1 − p
 − iγ�t (e−ip
+1 − 1)], (A20)

so the sum over n
 yields
∞∑

n
=0

[ei[p
+1−p
−iγ�t (e−ip
+1 −1)]]n


= 1

1 − ei[p
+1−p
−iγ�t (e−ip
+1 −1)]
. (A21)

The integral over p1 reads∫ π

−π

d p1

2π

eip1n0+γ�tn0(e−ip1 −1)

1 − ei[p2−p1−iγ�t (e−ip2 −1)]
. (A22)

We can argue just as in the previous calculation to show
that the net effect of doing this integral is to implement the
constraint

p1 = p2 − iγ�t (e−ip2 − 1). (A23)

Similarly, the effect of doing the integrals over p2, ..., pT −1 is
to implement the constraints

p
 = p
+1 − iγ�t (e−ip
+1 − 1), (A24)

for 
 = 2, ..., T − 1. While this recurrence relation is proba-
bly not solvable in closed form, we can do a trick to evaluate
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p
 (for 
 = 1, ..., T − 1) in terms of pT (the only momentum
variable not yet integrated over). Notice that Eq. (A24) looks
like a “backwards” Euler time step corresponding to the
ordinary differential equation (ODE)

ṗ = −iγ (e−ip − 1). (A25)

This approximation becomes exact in the �t → 0 limit,
which is the limit we are interested in. Eq. (A25) has the
solution

eip(t ) = 1 − Ce−γ t , (A26)

where C must be determined from the initial condition p(0) =
pT (since the ODE runs “backwards”). Doing so, we have

eip0 = 1 − (1 − eipT )e−γ t (A27)

in the small �t limit, where p0 is defined via

eip0 := eip1+γ�t (e−ip1 −1). (A28)

The intuition is that p0 is what we reach after starting at pT

and taking T time steps of size �t . Our last integral reads∫ π

−π

d pT

2π
eip0n0 e−ipT nT

=
∫ π

−π

d pT

2π
[(1 − e−γ t ) + e−γ t eipT ]n0 e−ipT nT . (A29)

Define q := 1 − e−γ t and change variables to z = eipT so that
we have∮

dz

2π i

[q + (1 − q)z]n0

znT +1

=
n0∑

j=0

(
n0

j

)
(1 − q) jqn0− j

∮
dz

2π i

1

znT − j+1
.

(A30)

The contour integral is nonzero only for the term with j = nT .
Then P(n f , t ; n0, 0) = 0 for nT > n0, and

P(n f , t ; n0, 0) =
(

n0

n f

)
[e−γ t ]n f [1 − e−γ t ]n0−n f (A31)

otherwise, i.e., we have a binomial distribution.

3. The chemical birth-death process

The chemical birth-death process models a species that is
randomly created and randomly degrades. Its list of chemical
reactions is

∅
k−→ X, X

γ−→ ∅, (A32)

where k is the birth rate and γ is the death rate. This reaction
corresponds to the CME

∂P(n, t )

∂t
= k[P(n − 1, t ) − P(n, t )]

+ γ [(n + 1)P(n + 1, t ) − nP(n, t )], (A33)

where P(n, t ) is the probability that the system has n X
molecules at time t (with n ∈ {0, 1, 2, ...}). This path integral

reads

lim
T →∞

∑
n1

· · ·
∑
nT −1

∫
d p1

2π
· · ·

∫
d pT

2π

× exp

{
T∑


=1

−ip
(n
 − n
−1) + k�t (eip
 − 1)

+ γ�t n
−1(e−ip
 − 1)

}
. (A34)

The terms that involve n
 (for some 
 = 1, ..., T − 1) look just
the same as in the previous subsection, so the sums over the
n
 evaluate to the same answer. The same ODE constraint is
also enforced by the integrals over the p
, leaving the only
difference between this problem and the previous one in the
evaluation of the final integral. We have∫ π

−π

d pT

2π
eip0n0 e−ipT nT ek

∑T

=1(eip
−1)�t

=
∫ π

−π

d pT

2π
[q + (1 − q)eipT ]n0 e−ipT nT ek

∑T

=1(eip
−1)�t ,

(A35)

where p0 is defined as in Eq. (A28), and q := 1 − e−γ t as
before. Observe that there is a term in the integrand, due to the
birth reaction, that was not present in Eq. (A29). To proceed,
we must evaluate that term in the small �t limit. Note,

k
T∑


=1

(eip
 − 1)�t ≈ k
∫ t

0
dt (eip(t ) − 1) = −[1 − eipT ]μq,

(A36)
where we have exploited the link between Riemann sums and
integrals, used the expression for p(t ) from Eq. (A26), and
defined μ := k/γ . Now our integral reads

e−μq
∫ π

−π

d pT

2π
[q + (1 − q)eipT ]n0 e−ipT nT eμqeipT

. (A37)

Changing variables to z = eipT yields

e−μq
∮

dz

2π i

[q + (1 − q)z]n0 eμqz

znT +1

= e−μq
n0∑

j=0

(
n0

j

)
qn0− j (1 − q) j

∮
dz

2π i

eμqz

znT − j+1
,

(A38)

which can be evaluated via Cauchy’s integral formula to
obtain the result

P(n f , t ; n0, 0) =
min(n0,n f )∑

j=0

(
n0

j

)
qn0− j (1 − q) j (μq)n f − je−μq

(n f − j)!
.

(A39)

This agrees with the result obtained using the Doi-Peliti path
integral (cf. Eq. (77) of Ref. [118]), although the calculation
was arguably less complicated here.
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APPENDIX B: AN ALTERNATIVE ARGUMENT FOR
TAYLOR EXPANDING THE ACTION

In Sec. IV D, we argued that Gillespie’s second condition
allows us to say that

[eipk ·ν j − 1]a j (xk−1)τ

≈
[

ipk · ν j − 1

2

N∑

=1

N∑

′=1

p

k p
′

k ν j
ν j
′

]
a j (xk−1)τ. (B1)

In this Appendix, we present a slightly more careful alterna-
tive argument for the validity of this important approximation.
Because the term we are approximating appears in the argu-
ment of the path integral’s exponential [cf. Eq. (32)], we are
really trying to say that

exp

⎧⎨
⎩

M∑
j=1

[eipk ·ν j − 1]a j (nk−1)τ

⎫⎬
⎭

≈ exp

⎧⎨
⎩ipk ·

⎛
⎝ M∑

j=1

ν ja j (nk−1)τ

⎞
⎠

− 1

2

M∑
j=1

(pk · ν j )
2a j (nk−1)τ

⎫⎬
⎭. (B2)

Let us now show that this approximation holds. To ease
notation, rewrite this as

exp

⎧⎨
⎩

M∑
j=1

[eip·ν j − 1]a j

⎫⎬
⎭

≈ exp

⎧⎨
⎩ip ·

⎛
⎝ M∑

j=1

ν ja j

⎞
⎠ − 1

2

M∑
j=1

(p · ν j )
2a j

⎫⎬
⎭, (B3)

where we have removed the superfluous index on p, and used
the shorthand a j := a j (nk−1)τ . Start by Taylor expanding the

exponentials:

exp

⎧⎨
⎩

M∑
j=1

[eip·ν j − 1]a j

⎫⎬
⎭

= e−(a1+···aM )eeip·ν1 a1 · · · eeip·νM aM

=
∑

x1,...,xM

(a1)x1

x1!
e−a1 · · · (aM )xM

xM!
e−aM eip·(ν1x1+···+νM xM ),

(B4)

where the sum over each x j runs from zero to infinity. Notice
that the factor corresponding to the jth reaction looks like a
Poisson distribution; since a j � 1 (condition (ii)), it can be
approximated as Gaussian in the usual way:

(a j )x j

x j!
e−a j ≈ 1√

2πa j
e
− (x j −a j )2

2a j . (B5)

Now the sum over each x j can be approximated as an integral
using the Euler-Maclaurin formula, and we can expand the
domain of integration without significantly changing the result
since the Gaussian function is sharply peaked:

∞∑
x j=0

1√
2πa j

e
− (x j −a j )2

2a j
+ip·ν j x j

≈
∫ ∞

0
dx j

1√
2πa j

e
− (x j −a j )2

2a j
+ip·ν j x j

≈
∫ ∞

−∞
dx j

1√
2πa j

e
− (x j −a j )2

2a j
+ip·ν j x j

= eip·ν j a j− (p·ν j )2

2 a j . (B6)

Putting these factors together for each j yields Eq. (B3), the
desired approximation. While the argument we just presented
is somewhat more technical than the one in the main text, it
also mirrors Gillespie’s original derivation of the CLE more
closely: We essentially approximated many Poisson distribu-
tions as normal distributions, just as Gillespie did [cf. Eq. (4)].
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