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Abstract

Noether’s theorem provides a powerful link between continuous symmetries and conserved
quantities for systems governed by some variational principle. Perhaps unfortunately, most
dynamical systems of interest in neuroscience and artificial intelligence cannot be described
by any such principle. On the other hand, nonequilibrium physics provides a variational
principle that describes how fairly generic noisy dynamical systems are most likely to
transition between two states; in this work, we exploit this principle to apply Noether’s
theorem, and hence learn about how the continuous symmetries of dynamical systems
constrain their most likely trajectories. We identify analogues of the conservation of energy,
momentum, and angular momentum, and briefly discuss examples of each in the context
of models of decision-making, recurrent neural networks, and diffusion generative models.
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1. Introduction

In physics, Noether’s theorem provides a fundamental link between the symmetries of phys-
ical systems on the one hand, and conserved quantities like energy and momentum on the
other hand (Noether, 1918; Kosmann-Schwarzbach et al., 2011; Neuenschwander, 2017).
In its modern form, it uniquely associates (equivalence classes of) independent continuous
symmetries, which can be formalized in terms of Lie groups and algebras, with (equivalence
classes of) independent conserved quantities (Martinez Alonso, 1979; Olver, 1986, 1993;
Brown, 2020). Importantly, it allows us to make nontrivial statements about the dynamics
of systems which may be otherwise extremely difficult to analyze.

The utility of Noether’s theorem has inspired a variety of extensions and applications,
including in the context of classical mechanics (Sarlet and Cantrijn, 1981), non-variational
partial differential equations (Anco, 2017), statistical mechanics (Hermann and Schmidt,
2021), and Markov models (Baez and Fong, 2013). But it is worth emphasizing that the
physical systems considered in typical applications of Noether’s theorem—whose dynam-
ics can be characterized as extremizing a certain functional—are extremely special. Most
dynamical systems, including those most relevant to neuroscience and artificial intelligence
(AI), cannot be described in terms of some nontrivial variational principle. Moreover, many
systems of interest exhibit features that suggest they are not even ‘almost’ describable by
some variational principle. For example, most dynamical systems lack a notion of ‘inertia’:
their dynamics are completely determined by their current state, rather their current state
and some notion of state velocity. Additionally, most dynamical systems are not ‘gradient-
like’, since the function governing how states evolve in time is not the gradient of some
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scalar potential. Either feature can yield major qualitative differences in dynamics: for
example, ‘normal’ versus ‘non-normal’ dynamics (Hennequin et al., 2012; Kerg et al., 2019)
maps onto the gradient-like versus non-gradient-like distinction.

Nonetheless, one still hopes that symmetries can be exploited to say something about
the dynamics of many systems of interest, including neural networks. Of special note is
the work of Tanaka and Kunin (2021), which says that neural network learning dynamics
can be associated with a certain Lagrangian when gradient descent is performed in discrete
steps, and hence that a version of Noether’s theorem holds. But what can be said about
more general dynamics not necessarily tied to learning? Consider, for example, the firing
rate dynamics of some trained recurrent neural network (RNN). Given symmetries, what
can we say about the network’s trajectory through state space?

Perhaps surprisingly, there is a sense in which Noether’s theorem applies to extremely
general noisy dynamical systems, including noisy RNNs and diffusion models. In this work,
our goal is to explore this application and interpret the associated conserved quantities. The
idea is that the transient and fluctuation-driven behavior (e.g., jumps between neighboring
attractor basins) of such systems is well-described by a certain variational principle, which
allows us to apply Noether’s theorem to learn about how state transitions are most likely to
occur. Noether’s theorem tells us that even though noise plays a crucial role in many of these
transitions, their form is not arbitrary, but in fact constrained by a system’s symmetries.

The paper is organized as follows. First, we review Noether’s theorem and some of its
well-known consequences. Next, we (re-)derive a variational principle that allows us to apply
Noether’s theorem to noisy dynamical systems. Finally, we discuss various consequences
of this application of Noether’s theorem, including analogues of energy and momentum
conservation. We consider a few example systems relevant to neuroscience and AI, including
drift-diffusion models of decision-making, noisy RNNs, and diffusion generative models.

2. Noether’s theorem, symmetries, and conserved quantities

What is colloquially referred to as “Noether’s theorem” was first presented in a paper
by Emmy Noether in 1918 (Noether, 1918). Two subtleties are worth mentioning: first,
Noether’s paper actually contains two theorems, and “Noether’s theorem” without addi-
tional qualifications usually refers to the first; second, although the theorem is usually
invoked to show that continuous symmetries imply conserved quantities, the converse di-
rection (conserved quantity =⇒ symmetry) actually also holds when one is careful about
how one defines “symmetry” and “conserved quantity”. See Brown (2020) and Olver (2018)
for helpful discussions of the history and precise formulation of the converse direction.

For our purposes, the simple version of Noether’s (first) theorem presented in physics
textbooks on mechanics and field theory will suffice. The standard story is usually told
in terms of actions and Lagrangians; while an alternative formulation which exploits a
Hamiltonian rather than Lagrangian viewpoint is also available, and arguably simplifies
the picture in a number of ways (Baez, 2020), we will not consider it here. Since our
applications involve trajectories parameterized only by one variable, time, we present the
‘particle’ rather than the ‘field’ version of Noether’s theorem.

Noether’s theorem applies to systems described by a variational principle. Let x(t) :=
(x1(t), ..., xN (t))T ∈ RN denote the state of one such system at time t ∈ [t0, tf ]. We assume
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that the system’s trajectory x(t) extremizes the ‘action’ functional

S[x] :=
∫ tf

t0

L(x(t), ẋ(t), t) dt (1)

where the function L is the corresponding Lagrangian. By a standard calculus of variations
result, this assumption implies the system’s trajectory satisfies the Euler-Lagrange equations

∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
or equivalently

∂L

∂xi
=

d

dt

(
∂L

∂ẋi

)
for i = 1, ..., N . (2)

A continuous symmetry of such a system is a continuous transformation that leaves the
action S invariant (regardless of whether the equations of motion are satisfied). The more
general notion of a continuous quasi -symmetry refers to a continuous transformation that
leaves the action almost invariant—i.e., up to a surface term. Noether’s theorem is about
the consequences of quasi-symmetry given that the equations of motion are satisfied.

Theorem 1 (Noether’s theorem) Let δt ≥ 0 and δx ∈ RN , and consider a transfor-
mation that takes t→ t′ := t+ ϵ δt and x → x′ := x+ ϵ δx. If the Lagrangian L satisfies

L(x′, ẋ′, t′) = L(x, ẋ, t) +
d

dt
K(x, ẋ, t) +O(ϵ2) (3)

for all ϵ > 0 sufficiently small, where K is some function, then the quantity

J :=
∑
i

∂L

∂ẋi
δxi −K (4)

is conserved in the sense that dJ/dt = 0 when the equations of motion are satisfied.

The proof of this version of Noether’s theorem is standard, so we do not include it here. Well-
known consequences of Noether’s theorem include the conservation of energy, which follows
from (quasi-)symmetry with respect to time translations; the conservation of momentum,
which follows from symmetry with respect to translations along one or more directions of
state space; and the conservation of angular momentum, which follows from symmetry with
respect to state space rotations within one or more planes.

Importantly, although the aforementioned quantities have specific forms for typical phys-
ical systems—e.g., energy is kinetic plus potential energy, and momentum is mass times
velocity—one can derive analogues of the more familiar energy, momentum, and so on as
long as the associated symmetries still hold for a non-physical system that can be charac-
terized by a Lagrangian. We exploit this fact in what follows.

3. Applying Noether’s theorem to stochastic dynamical systems

Let us now consider a system defined by a set of stochastic differential equations (SDEs)

ẋ = f(x, t) +G(x, t) ηt (5)

where x(t) := (x1(t), ..., xN (t))T ∈ RN denotes the system’s state at time t ∈ [t0, tf ],
f : RN × [t0, tf ] → RN determines the drift term, G : RN × [t0, tf ] → RN×M determines
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the noise amplitude, and ηt is an M -dimensional vector of independent Gaussian white
noise terms. For technical reasons, we assume that the N ×N diffusion tensor D(x, t) :=
1
2G(x, t)G(x, t)T is positive definite for all x and t, and hence always invertible.

To apply Noether’s theorem to systems described by Eq. 5, we must identify a relevant
variational principle. But from the form of Eq. 5 alone, it is not clear why we should expect
one to exist, or what form it should take if it does. A path forward becomes clearer if one
exploits the rich analogy between quantum mechanics and stochastic dynamics.

In one view, quantum mechanical systems are characterized by the time evolution of
their wave function ψ(x, t), which encodes the probability of each possible state occupancy
observation. The probability amplitude associated with a transition from state x0 at time
t0 to a state x at time tf can be written as (Feynman et al., 2010; Kleinert, 2006)

K(x, tf ;x0, t0) =

∫
D[x] exp

{
i

ℏ
S[x]

}
(6)

where the integral is over all possible paths from x0 to x, and where S is the system’s
associated action functional. What makes this particular description of a quantum sys-
tem’s behavior interesting is that it makes the connection between quantum and classical
mechanics more explicit: each possible path from x0 to x contributes to the above path
integral, but the path that extremizes S—i.e., the classical path—contributes the most, and
dominates in the ℏ → 0 limit, or equivalently when quantum effects are taken to be neg-
ligible. Said differently, the above path integral description provides us with a variational
principle that describes what path the system is most likely to take from x0 to x.

A path integral description of stochastic dynamics also exists, and says the probability
(rather than probability amplitude) associated with an x0 to x transition can be written

p(x, tf ;x0, t0) =

∫
D[x] exp {−S[x]} S[x] :=

∫ tf

t0

L(x, ẋ, t) dt

L(x, ẋ, t) :=
1

4
[ẋ− f(x, t)]TD−1(x, t)[ẋ− f(x, t)] .

(7)

This construction is usually called the Onsager-Machlup path integral (Onsager and Machlup,
1953; Cugliandolo and Lecomte, 2017), and is essentially equivalent to the Martin-Siggia-
Rose (Martin et al., 1973) path integral. The Lagrangian L here is a quadratic form which
can be interpreted as follows: the system usually follows its drift term, but can fluctuate in
other directions, with the strength and direction of those fluctuations being controlled by
the diffusion tensor. In directions with higher noise, fluctuations incur a smaller action cost,
and hence they are more likely. Unlike in the case of quantum and classical mechanics, the
most likely path is the one which minimizes S. This path dominates the path integral in
the small noise limit—yielding a stochastic dynamics analogue to classical mechanics—as
one can formally show by exploiting Laplace’s method.

Now that we have a variational principle associated with Eq. 5, we can apply Noether’s
theorem. In the next section, we introduce analogues of familiar conserved quantities.

4. Energy, momentum, and angular momentum conservation

Applying Noether’s theorem to our Lagrangian (Eq. 7) tells us how a system’s continuous
symmetries and quasi-symmetries constrain the most likely path it takes between any two
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states, including paths that require noise, like transitions between attractor basins. Since
this Lagrangian can exhibit some of the same (quasi-)symmetries as physical systems, one
can derive analogues of energy, momentum, and angular momentum conservation. Given
that we started with a fairly arbitrary stochastic dynamical system (e.g., f is not necessarily
the gradient of any potential function), this may be somewhat surprising.

A caveat, however: one should not get too greedy. While one might hope that applying
Noether’s theorem here produces conserved quantities that remain interesting as one takes
the noise in the system to zero, since many dynamical systems of interest are deterministic,
we will see that this does not happen. All of the conservation laws we obtain reduce to
trivialities in the zero noise limit, which might be expected in light of the fact that we are
not making any assumptions about f . One cannot get something from nothing, after all.

4.1. Energy conservation

Assume our Lagrangian does not depend explicitly on time, which is equivalent to demand-
ing that neither f nor D depends explicitly on time. Then an infinitesimal time translation
t′ := t+ ϵ produces a state perturbation x(t′) = x(t) + ẋ(t) ϵ and changes L as

L→ L+ ϵ

[
∂L

∂x
· ẋ+

∂L

∂ẋ
· ẍ

]
= L+ ϵ

[
dL

dt
− ∂L

∂t

]
= L+ ϵ

dL

dt
(8)

where we used the fact that L does not depend explicitly on time in the last step. By
Noether’s theorem, the quantity

E :=
∂L

∂ẋ
· ẋ− L =

1

4
ẋTD−1ẋ− 1

4
fTD−1f (9)

is conserved, i.e., dE/dt = 0 when the equations of motion are satisfied. Considering special
cases helps us make sense of this quantity. Suppose D is a diagonal matrix and independent
of x. If f = −D ∂V

∂x for some scalar potential V (x), our original L is equivalent to

L′ =
1

4
ẋD−1ẋ+

1

4
fD−1f , (10)

since the cross term −1
2 ẋ

∂V
∂x is equal to a total time derivative, and hence does not contribute

to the equations of motion. This Lagrangian ‘looks’ like a kinetic energy term (the mass
associated with xi is

1
2Dii

) and a potential term W (x) := 1
4f(x)

TD−1f(x), except that the
potential term has the ‘wrong’ sign. Similarly, our expression for E becomes kinetic minus
potential energy, which is opposite how E looks for physical systems. Another informative
special case assumes D is state-independent and isotropic, i.e., D = DIN , so

E =
∥ẋ∥22 − ∥f(x)∥22

4D
=

∑
i

ẋ2i − fi(x)
2

4D
. (11)

The above expression makes clear that the conservation of energy is a statement about
how the system’s fluctuation-driven trajectory differs from the deterministic trajectory de-
termined only by its drift term f . The squared norm of the ‘state velocity’ ẋ deviates
from that of the drift term in general, but by the same amount throughout its most likely
transition between two states. When the system follows its deterministic trajectory, E = 0.
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Since E is greater when the difference between the norms of ẋ and f(x) is large, we
might expect the size of E to be related to the time the system takes to transition between
two states. (As a related point, note that E has units of inverse time.) This turns out to
be true, and for 1D systems one has a one-to-one relationship through the easy-to-derive

t∗ =

∫ xf

x0

dx√
f(x)2 + 4D(x)E

. (12)

In other words, the transition time t∗ is strictly decreasing as a function of energy.

4.2. Momentum conservation

Assume our Lagrangian does not depend explicitly on xi, i.e., that neither f nor D does.
Then an infinitesimal translation x′i → xi + ϵ along direction i does not change L, and

pi :=
∂L

∂ẋi
=

1

2

∑
j

D−1
ij [ẋj − fj(x, t)] (13)

is conserved. More generally, momentum is defined as the N -dimensional vector

p :=
∂L

∂ẋ
=

1

2
D−1(x, t) [ẋ− f(x, t)] (14)

and can be conserved in up to N independent directions. While energy appears to measure
the overall extent to which the deterministic dynamics are violated, different components
of p quantify how badly this happens along each direction of state space. As in the case of
energy, when the system follows its deterministic trajectory, ẋ = f , so p = 0.

4.3. Angular momentum conservation

Assume our Lagrangian is invariant to rotations within the xi-xj plane, and in particular
to infinitesimal rotations of the form x′i = xi − ϵxj , x

′
j = xj + ϵxi. By Noether’s theorem,

Lij :=
∂L

∂ẋi
δxi +

∂L

∂ẋj
δxj = xipj − xjpi (15)

is conserved. More generally, we can define an N ×N angular momentum tensor

L := xpT − pxT =
1

2
xD−1(ẋ− f)T − 1

2
(ẋ− f)D−1xT (16)

which is antisymmetric and has up to N(N − 1)/2 distinct entries (not coincidentally, the
number of generators of the rotation group SO(N)), each of which may be conserved. The
conservation of Lij implies that the extent to which dynamics deviate from the deterministic
trajectory along the xi direction constrains the extent to which they can deviate along the
xj direction. When the system follows its drift term, pi = pj = 0 and hence Lij = 0.

5. Case studies relevant to neuroscience and AI

We now apply Noether’s theorem to three example settings: (i) drift-diffusion models of
decision-making, (ii) RNNs with point attractors, and (iii) diffusion generative models. We
compute most likely transition paths directly via action minimization (Strang et al., 2023).1

1. See https://github.com/john-vastola/noether-neurreps24 for code.
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Figure 1: Conservation laws relevant to simple decision-making and decision memory mod-
els. a. For a drift-diffusion model with fixed decision bounds at ±1, the most likely path
from any evidence state to the opposite boundary is (approximately) a straight line (blue,
‘LAP’). Raw paths (n = 981) with same start state, end state, and transition time also
shown. b. Transitions between two states of a single-attractor model (heatmap: steady
state distribution) are direct when energy and angular momentum are high, and involve a
diversion to the attractor state when they are low. c. Transitions between two attractor
basins in a model with three attractors (heatmap: steady state distribution) are more direct
when energy is high, and involve visiting an intermediate attractor when energy is low.

5.1. Drift-diffusion models of decision-making

Drift-diffusion models (Ratcliff et al., 2016) purport to describe the dynamics of decision-
making in various multiple-alternative forced choice tasks (e.g., are dots on a screen moving
mostly to the left or right?). They involve two components: Brownian-like particle dynamics

ẋ = v + σ ηt t ∈ [0,∞) (17)

where v = const. is the drift term (or ‘bias’) and σ is the noise strength, and boundary
conditions that specify how the particle’s state determines a decision. In the simplest case,
which we will assume here, a decision happens when x reaches either an upper or lower
threshold, say, at ±1. More complex boundary shapes are often considered, e.g., time-
dependent bounds that model decision urgency. But even simple drift-diffusion models
explain available behavioral and neural data surprisingly well (Gold and Shadlen, 2007).

The decision usually matches the sign of the drift term, but fluctuations, which can be
viewed as representing random variations in the decision-maker’s incoming evidence, can
cause the particle to move in the opposite direction. One can ask: given that the system
makes the ‘wrong’ decision at some time T ≥ 0, what path through state space did the
system most likely take? Or equivalently: did the decision-maker most likely receive a
sudden burst of contrary evidence, a steady stream of it, or something else?

For f = v and D = σ2/2, if we neglect decision-boundary-related effects, we have a
Lagrangian that does not depend explicitly on x, so momentum is conserved. Then

p =
ẋ− v

σ2
= const. =⇒ x(t) = x0 + (v + σ2p)t = x0 +

(xf − x0)

T
t , (18)
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i.e., that the system is most likely to travel from x0 to xf in an amount of time T with
a constant velocity. In other words, the most likely way the decision-maker makes the
wrong choice is by unluckily receiving a steady stream of contrary evidence. In practice,
the presence of the decision boundaries modifies this conclusion, but only slightly (Fig. 1a).

5.2. Changes of mind in an attractor network model of decision memory

Animal decision-making is thought to involve at least three processes: (i) evidence accu-
mulation, (ii) weighing evidence to come to a decision, and (iii) storing that decision for
later use. Attractor network models, where each possible decision corresponds to a different
attractor basin, provide a popular possible means by which neural circuits could achieve
some combination of the above three aims, but especially the last (Machens et al., 2005;
Kopec et al., 2015; Piet et al., 2017).

Our conservation laws provide a way to think about movement both within and between
basins, assuming no explicit time-dependence. Consider a 2D Ornstein-Uhlenbeck process
as a model of within-attractor dynamics, and note both energy E and angular momentum
L are conserved. State transitions tend to be more direct when E and L are high (i.e., when
the transition is fast), and to visit the attractor’s fixed point when they are low (Fig. 1b).

Interestingly, multistable attractor network models predict that ‘changes of mind’ are
possible depending on the distance between and relative shallowness of different attractor
basins (Albantakis and Deco, 2011). For example, if the available evidence is somewhat
ambiguous during a two-alternative forced choice task, the basins may be relatively shallow
and close together, and one might expect a relatively high rate of ‘hops’ between them.

Consider a modified version of the model from Piet et al. (2017) with

τ ẋ = µ0 +
A

2

[
tanh(

x− c

n
) + 1

]
− I

2

[
tanh(

y − c

n
) + 1

]
− x+

√
2τσ ηx

τ ẋ = µ0 +
A

2

[
tanh(

y − c

n
) + 1

]
− I

2

[
tanh(

x− c

n
) + 1

]
− y +

√
2τσ ηy

(19)

which is a multistable attractor network. The parameters µ0, A, I, and σ control the size
and number of attractor basins. We consider a parameter set with three stable states, and
interpret one as an ‘undecided’ state. Given a transition between the two choice-related
basins, will this system stop at the ‘undecided’ state, or not? The answer depends on the
system’s energy E. When E is high, the system takes a direct path; when E is low, the
system must visit the intermediate state en route to the other choice basin (Fig. 1c).

5.3. Data manifold symmetries and reverse diffusion dynamics

Diffusion models sample from realistic and high-dimensional data distributions (Sohl-Dickstein
et al., 2015; Song et al., 2021; Yang et al., 2023), and generalize well (Wang and Vastola,
2024; Vastola, 2025). The core idea is to corrupt a data distribution via a forward stochastic
process, and then learn to reverse the mapping in order to generate samples from noise:

ẋ =
√
2t ηt t = 0 → t = T forward process, pdata to pnoise (20)

ẋ = −t s(x, t) t = T → t = 0 reverse process A, pnoise to pdata

ẋ = −2t s(x, t) +
√
2t ηt t = T → t = 0 reverse process B, pnoise to pdata
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Here, p(x|t) is the noise-corrupted data distribution and s(x, t) := ∇x log p(x|t) is the score
function. Two reverse processes are shown: the popular probability-flow ODE (PF-ODE),
and the reverse SDE, which involves noise (Song et al., 2021). In practice, either can
outperform the other sample-quality-wise depending on the data set (Karras et al., 2022).
How do the reverse diffusion trajectories of the two approaches differ?

We can exploit (rotation) symmetry to provide an answer in an interesting special case.
Consider a Gaussian defined on a 2D ring of radius R, whose noise-corrupted version is

pdata(x|t) :=
1

2π(σ20 + t2)

∫ 2π

0
e
− (x−R cos θ)2

2(σ2
0+t2)

− (y−R sin θ)2

2(σ2
0+t2)

dθ

2π
=
e
− (∥x∥22+R2)

2(σ2
0+t2)

2πt2
I0

(
R

σ20 + t2
∥x∥2

)
where I0 denotes the modified Bessel function of the first kind. One can use this expres-
sion to analytically compute the score function. One finds that PF-ODE trajectories are
not curved, but move towards the ring along the line perpendicular to its nearest tangent.
Meanwhile, the stochastic sampler can produce trajectories that end at various other lo-
cations. The differences between these trajectories can be conveniently characterized in
terms of angular momentum L, which is conserved by the rotation symmetry of the data
distribution, and hence of the score; reaching points near the deterministic trajectory’s end
is ‘easier’, and hence requires less angular momentum, while reaching points on the other
side of the ring requires greater angular momentum (Fig. 2).

6. Conclusion

x

y

high L

low L

PF-ODE
path

t ~ 0

re
ve

rs
e 

di
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Figure 2: Angular momentum conservation
in reverse diffusion. Left: depiction of re-
verse diffusion for a rotationally-symmetric
data distribution. Right: most likely transi-
tion paths given a fixed starting point (black
dot) and different angular momentum values
(green is lowest, red is highest). Dashed black
line is the PF-ODE trajectory.

The preceding investigation is a proof of
principle that Noether’s theorem can be
usefully applied to study stochastic dynam-
ics, and that the conserved quantities we ob-
tain by doing so (e.g., energy, momentum,
angular momentum) recognizably modulate
the most likely transitions of systems. As in
physics, a system’s symmetries constrain its
(most likely) behavior.

Several points suggest interesting direc-
tions for future work. First, it appears that
Noether’s theorem can be used to derive
conserved quantities associated with neural
networks that are not invariant, but equiv-
ariant (Cohen and Welling, 2016), to at
least some transformations; our Lagrangian
is rotation-invariant as long as f is rotation-
equivariant, for example. Second, since the
appropriately-formulated converse direction
of Noether’s theorem is true, it may be pos-
sible to learn symmetries from empirically-identified conserved quantities. Finally, given
the variety of geometric structures and symmetries relevant to modern AI (Sanborn et al.,
2024), there are many more conserved quantities to explore beyond energy and momentum.
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