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Abstract
The chemical master equation (CME) is a fundamental description of interacting
molecules commonly used to model chemical kinetics and noisy gene regulatory
networks. Exact time-dependent solutions of the CME—which typically consists of
infinitelymanycoupleddifferential equations—are rare, and are valuable for numerical
benchmarking and getting intuition for the behavior of more complicated systems.
Jahnke andHuisinga’s landmark calculationof the exact time-dependent solutionof the
CME for monomolecular reaction systems is one of the most general analytic results
known; however, it is hard to generalize, because it relies crucially on special properties
ofmonomolecular reactions. In this paper, we rederive Jahnke andHuisinga’s result on
the time-dependent probability distribution and moments of monomolecular reaction
systems using theDoi-Peliti path integral approach, which reduces solving the CME to
evaluatingmany integrals.While theDoi-Peliti approach is less intuitive, it is alsomore
mechanical, and hence easier to generalize. To illustrate how the Doi-Peliti approach
can go beyond the method of Jahnke and Huisinga, we also find an explicit and exact
time-dependent solution to a problem involving an autocatalytic reaction that Jahnke
and Huisinga identified as not solvable using their method. Most interestingly, we are
able to find a formal exact time-dependent solution for anyCMEwhose list of reactions
involves only zero and first order reactions, which may be the most general result
currently known. This formal solution also yields a useful algorithm for efficiently
computing numerical solutions to CMEs of this type.
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1 Introduction

The chemical master equation (CME) provides a fundamental description of well-
mixedmolecules interactingwith each other via a set of chemical reactions (McQuarrie
1967; Gillespie 1992, 2000, 2007; Gillespie et al. 2013; Fox and Munsky 2017;
Munsky et al. 2018). It models dynamics that are discrete (the state of the system
is a set of nonnegative integers) and stochastic (chemical reactions occur with some
probability). The CME has recently enjoyed tremendous success as a framework for
understanding noisy single cell data (Neuert et al. 2013; Munsky et al. 2015; Fox
et al. 2016; Munsky et al. 2018; Weber et al. 2018; Fox and Munsky 2019; Fox et al.
2019), particularly in simple model organisms like yeast where techniques like single-
molecule Fluorescence in situHybridization (smFISH) allow RNAmolecule numbers
to be counted accurately (Raj et al. 2008; Femino et al. 1998; Rahman 2013). Outside
of cell and molecular biology, master equations have been successfully used to model
population dynamics (Ovaskainen and Meerson 2010; Melbinger et al. 2010; Assaf
and Meerson 2017), traffic (Nagel and Schreckenberg 1992; Mahnke and Pieret 1997;
Mahnke et al. 2005), and gas phase chemical kinetics (Miller and Klippenstein 2006;
Glowacki et al. 2012; Jasper et al. 2014), among other things.

Although it is very useful for defining discrete stochasticmodels, theCMEgenerally
cannot be solved directly. One typically resorts to an approximate approach, like using
Gillespie’s algorithm (Gillespie 1976, 1977) to extract information from many brute
force simulations, or using finite state projection (Munsky and Khammash 2006; Pele
et al. 2006; Fox et al. 2016; Fox andMunsky 2019), or partitioning the system (e.g. low
versus high copy number, slow versus fast time scale) (Harris and Clancy 2006; Harris
et al. 2009; Iyengar et al. 2010; Bokes et al. 2012; Hasenauer et al. 2014; Kan et al.
2016), or solving a continuous approximation to the CME like the chemical Langevin
equation (Gillespie 2000, 2002; Grima et al. 2011; Vastola and Holmes 2020).

Unsurprisingly, exact time-dependent solutions of the CME are particularly rare,
and have only been computed for a small number of specific cases. This is because
they involve dealing with additional complexity on top of what is required to compute
steady state solutions, which are themselves extremely difficult to compute and only
known in a small number of cases (see e.g. Schnoerr et al. (2017) for some discussion).
McQuarrie (1967) describes some of the early attempts: in 1940, Max Delbrück eval-
uated the CME for the autocatalytic reaction S → S + S (Delbruck 1940); in 1954,
Renyi solved the binding reaction A + B → C (Rényi 1954); in 1960, Ishida solved
the death reaction S → ∅ and presented the first CME solution with time-dependent
rates (Ishida 1960); in 1963 and 1964, McQuarrie et al. solved many simple systems
(including A + A → B and A + B → C) using the method of generating functions
(McQuarrie 1963; McQuarrie et al. 1964).

The situation did not change appreciably until Jahnke and Huisinga’s landmark
paper (Jahnke and Huisinga 2007), more than forty years later. Their 2007 paper
constituted a major advance in our collective understanding of the CME; they were
able to solve theCME for a systemwith an arbitrary number of species experiencing an
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arbitrary number of reactions whose rates have arbitrary time-dependence, provided
that the reactions consisted of some combination of birth (∅ → Sk), death (S j →
∅), and conversion (S j → Sk).1 The shocking generality of their result, as well as
the explicitness of the solution they wrote down (in Theorem 1 of that paper), was
powerful.

Since 2007, there have been fewnew results of the same generality. Reis et al. (2018)
extend Jahnke and Huisinga’s result by considering hierarchical first-order reaction
networks (which allow a certain subset of first-order reactions that is strictly larger than
the set of monomolecular reactions). However, there has not been (for example) any
result on the solution to general first-order reactions, or general bimolecular reactions.
At present, even finding the exact solutions of simple systems that involve bimolecular
reactions is nontrivial: the work of Laurenzi (A+ B ↔ C) (Laurenzi 2000), as well as
Arslan and Laurenzi (A+ B ↔ A+ A) (Arslan and Laurenzi 2008) are two examples.

One drawback of Jahnke andHuisinga’s paper is that it essentially relied on guessing
the solution. It was well-known that Poisson and multinomial distributions solved the
CME in special cases, and that these distributions had certain desirable properties (e.g.
a Poisson distribution stays a Poisson distribution, and amultinomial distribution stays
a multinomial distribution; see Sect. 3 of their paper). To derive their Theorem 1, these
properties were exploited, along with the fact that only monomolecular reactions were
considered. Of course, their method completely breaks down for a system that is only
slightly more complicated; as they point out in Sect. 6 of Jahnke and Huisinga (2007),
adding an autocatalytic reaction S → S+ S to a system they can easily solve manages
to make it beyond the scope of their results.

Hence, it would be nice if there was a method to obtain their classic result that
did not rely on systematic guessing. In this paper, we offer the Doi-Peliti path integral
approach to solving the CME as one such method. The Doi-Peliti approach allows one
to ‘turn the crank’, so to speak, and generate a time-dependent solution of the CME
through a straightforward but difficult calculation. Importantly, it is system-agnostic:
one does not need to know properties like ‘Poisson distributions stay Poisson’, or
assume the solution takes a certain form.

Doi-Peliti field theory—which emerged from the pioneering papers of researchers
like (Doi 1976a, b), Peliti (1985, 1986), Peliti and Zhang (1985), and Grassberger
and Scheunert (1980), Grassberger (1982, 1989), Cardy and Grassberger (1985)—
reframes solving the CME as a field theory problem. This enables the use of powerful
approximation schemes, like the renormalization group anddiagrammatic perturbation
theory (Mattis and Glasser 1998; Lee 1994; Lee and Cardy 1994, 1995; van Wijland
et al. 1998; Canet et al. 2004; Canet 2006; Tuber et al. 2005). While Doi-Peliti field
theory is still somewhat obscure in mathematical biology, it has seen the occasional
application: e.g. to understand population dynamics given colored noise (Fung et al.
2017), age dependent branching processes (Greenman and Chou 2016; Greenman
2017), and large deviations in gene regulatory networks (Bressloff 2014; Assaf and
Meerson 2017). Although not Doi-Peliti, a qualitatively similar path integral has been

1 These systems are called “monomolecular” because all allowed reactions have at most one molecule as
input, and at most one molecule as output.
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used to solve the CME for a multistep transcription and translation process (Albert
2019).

We will use Doi-Peliti field theory to rederive Jahnke and Huisinga’s Theorem
1. Moreover, in order to show that the Doi-Peliti path integral approach is strictly
more powerful than the one used by Jahnke and Huisinga, we use it to exactly solve
a problem they said their method could not, as well as a far more general problem
(the CME whose list of reactions consists of any combination of zero and first order
reactions).We solve these additional problems in complete generality, and obtain exact
time-dependent solutions assuming rates with arbitrary time-dependence.

The paper is organized as follows. In Sect. 2, we state the problems we will solve—
involving (i) monomolecular systems, (ii) one species birth-death-autocatalysis, and
(iii) arbitrary combinations of zero andfirst order reactions—aswell as ourmain results
on their solutions. We also discuss a few interesting theoretical and numerical appli-
cations of our main results. In Sect. 3, we present the main result of Doi-Peliti theory,
whichwe use to derive the aforementioned results. The associated technicalmachinery
is developed in Appendix B. Sections 4 and 5 contain technical calculations that derive
our results for monomolecular systems and one species birth-death-autocatalysis, with
our most general results (for systems involving arbitrary combinations of zero and first
order reactions) derived and discussed in the somewhat technical Appendices D and
E. Finally, in Sect. 6, we discuss the merits and drawbacks of the Doi-Peliti approach
to solving the CME, and speculate on how it could be further utilized.

2 Problem statements andmain results

In this section, we introduce in detail the specific problems we will solve, and we
present our main results regarding their solutions. Although the Doi-Peliti method is
not completely rigorous, the solutions we obtain using it can be rigorously checked
by direct substitution into the CME—a tedious but usually straightforward process.

We present results for several systems, in order of increasing complexity: the
chemical birth-death process, monomolecular reactions, single species birth-death-
autocatalysis, and arbitrary combinations of zero and first order reactions with
arbitrarily many species. While the chemical birth-death process is a kind of
monomolecular reaction system, we include it here to give mathematicians new to
the CME a toy example (that can be stated with minimal notational baggage) of the
kind of results we are seeking.

2.1 The chemical birth-death process as a prototype

The chemical birth-death process is simple enough to be biologically relevant [it can
be used to model how the number of a single type of mRNA or protein in a single
cell changes stochastically with time in the absence of significant regulation, Fox and
Munsky 2017; Munsky et al. 2018; Bressloff 2017], but complicated enough to have
nontrivial dynamics (the number of molecules does not increase without bound or
shrink to zero in the long time limit, allowing there to exist a Poisson-like steady
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state probability distribution). It is linear (in several distinct but related senses of the
word), allowing its associated CME to be exactly solved via a variety of methods [(e.g.
separation of variables and ladder operators (Vastola 2019a), and via a path integral
different from the one we will discuss here (Vastola and Holmes 2020)].

It is characterized by the chemical reactions

∅
k(t)−−→ S

S
γ (t)−−→ ∅

(1)

where k(t) and γ (t) parameterize the small time birth and death rates, respectively.2

The time-dependence of these parameters is allowed to be arbitrary as long as they
both remain nonnegative and finite for all times. The corresponding CME reads

∂P(x, t)

∂t
= k(t) [P(x − 1, t) − P(x, t)]

+ γ (t) [(x + 1)P(x + 1, t) − x P(x, t)]
(2)

where P(x, t) is the probability that the state of the system is x ∈ N := {0, 1, 2, ...} at
time t ≥ t0.Weare particularly interested in the transition probability P(x, t; ξ, t0), i.e.
the solution ofEq. 2whose probability distribution is initially certain. This corresponds
to choosing the specific initial condition P(x, t0) = δ(x − ξ) for some ξ ∈ N,
where δ(z) denotes the Kronecker delta function (which equals one if z = 0 and zero
otherwise). If the transition probability is known, the solution to Eq. 2 for an arbitrary
initial distribution P0(x) can be written

P(x, t) =
∞∑

y=0

P(x, t; y, t0)P0(y) . (3)

In practice, we are also interested in several other properties of the solution. In particu-
lar, we are interested in the long time behavior described by the steady state probability
distribution

Pss(x) := lim
t→∞ P(x, t; ξ, t0) , (4)

moments like

〈x(t)〉 :=
∞∑

x=0

x P(x, t)

2 In particular, if the system has x molecules of species S at time t , the probability that the birth reaction
happens in a window of time [t, t +Δt) is approximately k(t)Δt , and the probability that the death reaction
happens is approximately γ (t)xΔt . See Gillespie (2000) for more details on the interpretation of and
formalism underlying the CME.
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〈x(t)[x(t) − 1]〉 :=
∞∑

x=0

x(x − 1)P(x, t) , (5)

and the complex-valued (i.e. g ∈ C) probability generating function

ψ(g, t) :=
∞∑

x=0

P(x, t) gx , (6)

whose derivatives correspond to variousmoments of interest. In fact, knowing the gen-
erating function is equivalent to knowing P(x, t), and its time evolution is described
by a PDE analogous to the CME:

∂ψ(g, t)

∂t
= k(t)[g − 1]ψ(g, t) − γ (t)[g − 1]∂ψ(g, t)

∂g
. (7)

The initial condition corresponding to P(x, t0) = δ(x − ξ) is ψ(g, t0) = gξ , as can
be verified using the definition of ψ . We can also take its long time limit, which we
will denote by ψss(g).

The main result for the chemical birth-death process is the following.

Theorem 1 (Chemical birth-death process) Consider the system described by Eq. 2
(and Eq. 7). Let λ(t) and w(t) be the solutions of

λ̇ = k − γ λ , λ(t0) = 0

ẇ = −γw , w(t0) = 1 .
(8)

Then if P(x, t0) = δ(x − ξ) for some ξ ∈ N, we have:

(i)

P(x, t; ξ, t0) =
min(x,ξ)∑

k=0

λ(t)x−ke−λ(t)

(x − k)!
(

ξ

k

)
w(t)k[1 − w(t)]ξ−k (9)

(ii)

〈x(t)〉 = ξw(t) + λ(t) (10)

(iii)

〈x(t)[x(t) − 1]〉 = w(t)2ξ(ξ − 1) + 2λ(t)w(t)ξ + λ(t)2 (11)

(iv)

ψ(g, t) = [1 + (g − 1)w(t)]ξ e(g−1)λ(t) (12)
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All results can be obtained independently of one another using the Doi-Peliti
approach described in the following sections. Alternatively, one can verify directly
that P(x, t; ξ, t0) satisfies Eq. 2 or that ψ(g, t) satisfies Eq. 7, and then obtain the rest
of the results by brute force calculation.

These results simplify tremendously in the long time limit if k and γ are time-
independent, essentially because P(x, t) reduces to a Poisson distribution regardless
of one’s choice of initial distribution P(x, t0).

Corollary 1 (Long time behavior of chemical birth-death process) Let k and γ be
time-independent, and define μ := k/γ . In the long time limit, we have:

(i) Pss(x) = μx e−μ

x ! (13)

(ii) 〈x〉 = μ (14)

(iii) 〈x[x − 1]〉 = μ2 (15)

(iv) ψss(g) = e(g−1)μ (16)

This follows from taking the t → ∞ limit of the previous results, since w(t) → 0
and λ(t) → μ.

Results on the chemical birth-death process are far from new. Still, we ask the reader
to keep these results in the back of their mind as we go on to discuss the analogous
results for more complicated systems. Because the chemical birth-death process is so
fundamental, more complicated results often reduce to these in the appropriate limit.

2.2 Monomolecular results

Heuristically, monomolecular reaction systems are the minimal multi-species gener-
alization of the chemical birth-death process. Like the chemical birth-death process,
they exhibit a certain kind of linearity; we will see that their solutions are completely
determined by a system of linear ordinary differential equations (ODEs).

Let us define them. Consider a system with n chemical species S1, ..., Sn , whose
reaction list reads

S j
c jk(t)−−−→ Sk j 	= k

∅
c0k(t)−−−→ Sk k = 1, ..., n

S j
c j0(t)−−−→ ∅ j = 1, ..., n

(17)

i.e. all possible monomolecular reactions (birth, death, and conversion) are allowed3.
Note that the rates are allowed to have arbitrary time-dependence as long as 0 ≤
3 The one exception is the trivial conversion reaction Sk → Sk , which is disallowed because including
it would be pointless. To ease notation (i.e. to avoid writing j 	= k many times), we follow Jahnke and
Huisinga and define ckk := 0 for all k = 1, ..., n.
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c jk(t) < ∞ for all j, k and all times t ≥ t0. The corresponding CME reads

∂P(x, t)
∂t

=
n∑

k=1

c0k(t) [P(x − εk, t) − P(x, t)]

+
n∑

k=1

ck0(t) [(xk + 1)P(x + εk, t) − xk P(x, t)]

+
n∑

j=1

n∑

k=1

c jk(t)
[
(x j + 1)P(x + ε j − εk, t) − x j P(x, t)

]

(18)

where P(x, t) is the probability that the state of the system is x := (x1, ..., xn)T ∈ N
n

at time t ≥ t0, and where εk is the n-dimensional vector with a 1 in the kth place and
zeros everywhere else.

The exact solution to Eq. 18, given the initial condition P(x, t0) = δ(x − ξ) for
some vector ξ := (ξ1, ..., ξn)

T ∈ N
n (where δ(z) is the multivariate generalization

of the Kronecker delta function, which equals one if z = 0 and zero otherwise), is
reported in Theorem 1 of Jahnke and Huisinga (2007). In order to state their solution,
we will need some notation.

Define the matrix A(t) and vector b(t) by

A jk(t) := ck j (t) for j 	= k ≥ 1

Akk(t) := −
n∑

j=0

ck j (t) for 1 ≤ k ≤ n

b(t) := (
c01(t) c02(t) · · · c0n(t)

)T
.

(19)

The deterministic reaction rate equations corresponding to our reaction list can be
written in terms of A(t) and b(t) as

ẋ = A(t)x + b(t) . (20)

Because Eq. 20 is linear, the solution with initial condition ξ = (ξ1, ..., ξn) can be
written as

x(t) =
n∑

k=1

ξkw(k)(t) + λ(t) (21)

where the vectors w(1)(t), ...,w(n)(t) and λ(t) are defined as

ẇ(k) = A(t)w(k) , w(k)(t0) = εk

λ̇ = A(t)λ + b(t) , λ(t0) = 0 .
(22)
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As we will shortly observe, the solution to the deterministic reaction rate equations is
intimately related to the solution of the CME (at least for monomolecular reactions).

Now define the 1-norm of a vector x as

|x| :=
n∑

k=1

|xk | . (23)

Define, because they will appear throughout this paper, multi-dimensional generaliza-
tions of powers, factorials, sums, integrals, and derivatives:

vx := v
x1
1 · · · vxnn

x! := x1! · · · xn !
∑

x

:=
∞∑

x1=0

· · ·
∞∑

xn=0∫
dx :=

∫
dx1 · · ·

∫
dxn

(
d

dz

)x

:=
(

d

dz1

)x1
· · ·

(
d

dzn

)xn
.

(24)

Using the above shorthand, we can define the product Poisson distribution as

P(x,λ) := λ
x1
1

x1! · · · λ
xn
n

xn ! e
−|λ| = λx

x! e
−|λ| , (25)

the multinomial distribution as

M(x, N ,w) := N ! [1 − |w|]N−|x|

(N − |x|)!
w

x1
1

x1! · · · w
xn
n

xn ! if |x| ≤ N and x ∈ N
N

= N ! [1 − |w|]N−|x|

(N − |x|)!
wx

x! if |x| ≤ N and x ∈ N
N ,

(26)

and the convolution of two probability distributions as

P1(x)	P2(x) :=
∑

z

P1(z)P2(x − z) =
∑

z

P1(x − z)P2(z) (27)

where the sum is over all z ∈ N
n such that x − z ∈ N

n . As in the one-dimensional
case, we can also define the probability generating function

ψ(g, t) :=
∑

x

P(x, t) gx (28)
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where g ∈ C
n , which satisfies the PDE

∂ψ(g, t)
∂t

=
n∑

k=1

c0k(t) [gk − 1]ψ(g, t)

−
n∑

k=1

ck0(t) [gk − 1]
∂ψ(g, t)

∂gk

+
n∑

j=1

n∑

k=1

c jk(t)
[
gk − g j

] ∂ψ(g, t)
∂g j

.

(29)

With all of that notation defined, we are ready to state the main result for monomolec-
ular reaction systems, which was originally proved by Jahnke and Huisinga4.

Theorem 2 (Jahnke-Huisinga monomolecular) Consider the system described by Eq.
18 (and Eq. 29). Let λ(t) and w(t) be the solutions of

λ̇ = A(t)λ + b(t) , λ(t0) = 0

ẇ(k) = A(t)w(k) , w(k)(t0) = εk .
(30)

Then if P(x, t0) = δ(x − ξ) for some ξ ∈ N
n, we have:

(i) P(x, t; ξ , t0) = P(x,λ(t))	M(x, ξ1,w(1)(t))	 · · · 	M(x, ξn,w(n)(t)) (31)

(ii) 〈
x j (t)

〉 =
n∑

k=1

ξkw
(k)
j (t) + λ j (t) (32)

(iii)
Cov(x j , x
) =

{∑n
k=1 ξkw

(k)
j

[
1 − w

(k)
j

]
+ λ j j = 


−∑n
k=1 ξkw

(k)
j w

(k)

 j 	= 


. (33)

(iv)
ψ(g, t) =

n∏

k=1

[
1 + (g − 1) · w(k)(t)

]ξk
e(g−1)·λ(t) (34)

All results can be obtained independently of one another using the Doi-Peliti
approach described in the following sections. Alternatively, one can verify directly
that P(x, t; ξ , t0) satisfies Eq. 18 or thatψ(g, t) satisfies Eq. 29 with the correct initial
condition, and then obtain the rest of the results by brute force calculation.

2.3 Birth-death-autocatalysis results

In Sect. 6 of their classic paper (Jahnke andHuisinga 2007), Jahnke andHuisinga solve
the CME corresponding to the autocatalytic reaction S → S + S exactly; however,

4 The generating function was not directly computed by them, but is essentially trivial to compute given
their results.
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they note that adding birth and death reactions yields a system not amenable to their
approach. In this section, we present the exact time-dependent solution to this problem,
whose reactions read

∅
k(t)−−→ S

S
γ (t)−−→ ∅

S
c(t)−−→ S + S

(35)

where the parameters controlling the rates of birth, death, and autocatalysis are all
allowed to have arbitrary time-dependence as long as they are nonnegative and finite
for all times. The CME reads

∂P(x, t)

∂t
= k(t) [P(x − 1, t) − P(x, t)]

+ γ (t) [(x + 1)P(x + 1, t) − x P(x, t)]

+ c(t) [(x − 1)P(x − 1, t) − x P(x, t)]

(36)

where P(x, t) is the probability that the state of the system is x ∈ N at time t ≥ t0.
Meanwhile, the PDE satisfied by the probability generating function ψ reads

∂ψ(g, t)

∂t
= k(t)[g − 1]ψ(g, t) − γ (t)[g − 1]∂ψ(g, t)

∂g

+ c(t)[g − 1]g ∂ψ(g, t)

∂g
.

(37)

Our main result on the solution of this system is the following.

Theorem 3 (Birth-death-autocatalysis) Consider the system described by Eq. 36 (and
Eq. 37). Let q(s) and w(s) be the solutions of

dq(s)

ds
= [

c(t − s + t0) − γ (t − s + t0)
]
q(s) + ic(t − s + t0) q(s)2 , q(t0) = p f

dw(s)

ds
= [c(t − s + t0) − γ (t − s + t0)] w(s) , w(t0) = 1

(38)

for arbitrary p f ∈ R and s ∈ [t0, t], where i denotes the imaginary unit. q(s) and
w(s) can be explicitly written as

q(s) = w(s)
1
p f

− i
∫ s
t0
c(t − t ′ + t0)w(t ′) dt ′

w(s) = e
∫ s
t0
c(t−t ′+t0)−γ (t−t ′+t0) dt ′ .

(39)
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Then if P(x, t0) = δ(x − ξ) for some ξ ∈ N, we have:

P(x, t; ξ, t0) = 1

2π

∫ ∞

−∞
dp f

[1 + iq(t)]ξ ei
∫ t
t0
k(t−s+t0)q(s)ds

(1 + i p f )x+1

ψ(g, t) =
[
1 + w(t)

1
g−1 − ∫ t

t0
c(t − t ′ + t0)w(t ′) dt ′

]ξ

×

× exp

{∫ t

t0

k(t − s + t0)w(s)
1

g−1 − ∫ s
t0
c(t − t ′ + t0)w(t ′) dt ′

ds

}
.

(40)

Moreover, if the parameters k, γ , and c are all time-independent and non-zero, the
function w(s) is explicitly

w(s) = e(c−γ )(s−t0) (41)

and the transition probability can be rewritten as

P(x, t; ξ, t0) =
[

γ
c − 1

γ
c − w(t)

]k/c
[1 − w(t)]x−ξ

[ γ
c − w(t)

]x ×

×
ξ∑

j=0

(
ξ

j

)
( j + k/c)x

x !
[
1 − γ

c
w(t)

]ξ− j
[

w(t)
( γ
c − 1

)2
γ
c − w(t)

] j (42)

where (y)x := (y)(y + 1) · · · (y + x − 1) is the Pochhammer symbol/rising factorial.
The generating function in this case reduces to

ψ(g, t) =
⎡

⎣
1 + (g − 1) c−γw(t)

c−γ

1 − (g − 1) c(w(t)−1)
c−γ

⎤

⎦
ξ

1
[
1 − (g − 1) c(w(t)−1)

c−γ

]k/c . (43)

Note that the ODEs that appear here are more complicated than the ODEs that appear
in the solution of the monomolecular problem (c.f. Eqs. 8 and 30) in at least two
ways: the time-dependence of the coefficients is in the opposite direction of the time-
dependence of the ODE solution (e.g. c(t − s + t0) versus q(s) ), and one of the
ODEs here is nonlinear. This indicates that adding the autocatalytic reaction to the
birth-death system greatly increases the complexity of the dynamics.

The transition probability and probability generating function can be obtained inde-
pendently of one another using the Doi-Peliti approach described in the following
sections. Alternatively, one can verify directly that the probability generating function
solves Eq. 37, and use the definition of the generating function to find the transi-
tion probability. Because the expression for the transition probability is somewhat
complicated, verifying it directly is not recommended.
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Interestingly, when ξ = 0 the time-dependent result above reduces to a negative
binomial distribution

P(x, t; 0, t0) = (k/c)x
x ! (1 − p)r px (44)

with

p := 1 − w(t)
γ
c − w(t)

r := k

c
, (45)

which mirrors the well-known result that the time-dependent solution of the birth-
death process reduces to a Poisson distribution with a time-dependent mean when
ξ = 0.

It is expected that this solution reduces to familiar distributions in certain limits; in
particular, as Jahnke and Huisinga originally point out, it should interpolate between
a binomial distribution, a Poisson distribution, and a negative binomial distribution.
Indeed it does, with these special cases corresponding to the k = c = 0 (pure death),
γ = c = 0 (pure birth), and k = γ = 0 (pure autocatalysis) limits, respectively. We
formalize this in the following corollary.

Corollary 2 (Limiting behavior of the birth-death-autocatalysis transition probability)
The transition probability P(x, t; x0, t0) becomes (i) binomial in the limit that k → 0
and c → 0, (ii) Poisson in the limit that γ → 0 and c → 0, and (iii) negative binomial
in the limit that k → 0 and γ → 0. That is,

lim
k,c→0

P(x, t; x0, t0) =
(

ξ

x

)
[w(t)]x [1 − w(t)]ξ−x (46)

for x ≤ ξ and 0 otherwise, i.e. a binomial distribution;

lim
γ,c→0

P(x, t; x0, t0) = λ(t)x−ξe−λ(t)

(x − ξ)! (47)

for x ≥ ξ and 0 otherwise, i.e. a (shifted) Poisson distribution; and

lim
k,γ→0

P(x, t; x0, t0) =
(
x − 1

ξ − 1

)
[w(t)]ξ [1 − w(t)]x−ξ (48)

which is nonzero only for x ≥ ξ , i.e. a (shifted) negative binomial distribution.

These limits can be taken directly, and are relatively straightforward; see Sect. 5 for
the calculations.

It is also true that the solution of this problem reduces to a birth-death process in the
c → 0 limit (i.e. the limit in which autocatalysis no longer happens). This is easiest
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to show using the generating function (Eq. 43), along with the identities

lim
c→0

1 + (g − 1) c−γw(t)
c−γ

1 − (g − 1) c(w(t)−1)
c−γ

= 1 + (g − 1)e−γ (t−t0)

lim
c→0

[
1 − (g − 1)

c(w(t) − 1)

c − γ

]−k/c

= e
k
γ

(g−1)
[
1−e−γ (t−t0)

]
.

(49)

If the autocatalytic reaction tends to occur more frequently than the degradation reac-
tion (i.e. if c > γ ), the number of molecules almost surely blows up to infinity in the
long time limit. However, if degradation tends to overtake autocatalysis (i.e. if γ > c),
then the steady state distribution exists and is nontrivial.

Corollary 3 (Long time behavior of birth-death-autocatalysis) Let k, γ , and c be time-
independent, and suppose that γ > c. In the long time limit, we have:

Pss(x) =
(

γ − c

γ

)k/c
(
c
γ

)x

x !
(
k

c

)

x

=
(

γ − c

γ

)k/c
(
c
γ

)
· · ·

(
c
γ

)

x !
(
k

c

)
· · ·

(
k

c
+ x − 1

)

ψss(g) =
(

γ − c

γ

)k/c 1
[
1 − cg

γ

]k/c

〈x〉 = k

γ − c

var(x) = k

γ

1

(1 − c/γ )2
.

(50)

Moreover, these reduce to the Pss and ψss for the chemical birth-death process in the
c → 0 limit, i.e.

(
γ − c

γ

)k/c
(
c
γ

)x

x !
(
k

c

)

x
→ μx

x ! e
−μ

(
γ − c

γ

)k/c 1
[
1 − cg

γ

]k/c → e(g−1)μ

k

γ − c
→ k

γ

k

γ

1

(1 − c/γ )2
→ k

γ
.

(51)

The simplest way to find Pss is to solve the steady state CME directly (i.e. set ∂P/∂t =
0 and solve the resulting recurrence relation). Alternatively, noting that w → 0, one
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can straightforwardly take the t → ∞ limit of our result from Theorem 3. The c → 0
is also easy to take. Computing moments is most easily done by taking derivatives of
ψss(g).

2.4 Zero and first order reactions

While obtaining the solution to the birth-death-autocatalysis system is certainly inter-
esting, the problem itself is quite special: it is one-dimensional, and involves only three
chemical reactions.What else can the Doi-Peliti approach be used to solve?What kind
of sets of chemical reactions are tractable?

The full potential of the Doi-Peliti approach is not clear. As a partial answer to
this question, however, we offer a result of somewhat shocking generality: a formal
solution to the CME of any system whose reaction list only contains zero and first
order reactions. By zero order reactions, we mean reactions like

∅ → Sk
∅ → Sk + S


∅ → Sk + S
 + Sr
∅ → Sk + S
 + Sr + · · ·

(52)

and so on, i.e. reactions requiring no molecules as input. By first order reactions, we
mean reactions like

S j → ∅

S j → Sk
S j → Sk + S


S j → Sk + S
 + Sr
S j → Sk + S
 + Sr + · · ·

(53)

and so on, i.e. reactions requiring exactly one molecule as input. The time-dependence
of each rate is assumed to be arbitrary as long as rates are nonnegative and finite for
all times. The birth reactions described in the previous sections are examples of zero
order reactions, while the death and conversion reactions are examples of first order
reactions.Other biologically relevant examples of first order reactions include catalytic
production (S j → S j + Sk , j 	= k) and splitting (S j → Sk + S
, j 	= k, j 	= 
).

The list of all possible zero and first order reactions also includes many reactions
that are almost certainly not biologically relevant—at least for mechanistic models
of interacting molecules whose reactions can all be directly justified via an appeal to
the physics of molecular collisions5. For example, the reaction where one molecule
splits into exactly one hundred molecules with no intermediate splitting is first order.
Of course, reactions more complicated than bimolecular may nonetheless be useful

5 As notes (Gillespie 2000), such systems involve reactions that are at most bimolecular (at most two input
molecules, and at most two output molecules).
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and important for constructing effective models of various biological and chemical
systems.

The CME of this system is somewhat tedious to write down, so we will instead note
that the PDE satisfied by the generating function can be written in the form

∂ψ(g, t)
∂t

=
∑

κ1,...,κn

ακ1,...,κn (t) (g1 − 1)κ1 · · · (gn − 1)κn ψ(g, t)

+
n∑

k=1

∑

κ1,...,κn

βk
κ1,...,κn

(t) (g1 − 1)κ1 · · · (gn − 1)κn
∂ψ(g, t)

∂gk

(54)

where the precise form of the coefficients ακ1,...,κn (t) and βk
κ1,...,κn

(t) are determined
by the details of one’s list of reactions. The κ1 through κn should be thought of as
indexing the various powers of (g j − 1) that appear. Our main result for this class of
systems is the following.

Theorem 4 (Arbitrary combinations of zero and first order reactions) Consider the
system described by Eq. 54. Let q(s) = (q1(s), ..., qn(s)) ∈ C

n be the solution of the
‘auxiliary ODEs’

dq j (s)

ds
= −i

∑

κ1,...,κn

β j
κ1,...,κn

(t − s + t0) [iq1(s)]
κ1 · · · [iqn(s)]κn , q j (t0) = p f

j

(55)

for some p f ∈ C
n, with s ∈ [t0, t]. Then if P(x, t0) = δ(x − ξ) for some ξ ∈ N

n, we
have

P =
∫

Rn

dp f

(2π)n

[
1 + iq(t)

]ξ
e
∫ t
t0

∑
ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

(1 + ip f )x+1 (56)

for the transition probability, and

ψ(g, t) = [
1 + iq(t)

]ξ ×
× e

∫ t
t0

∑
ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

∣∣∣∣
p f =−i(g−1)

(57)

for the probability generating function.

Computing the generating function involves computing a contour integral whose inte-
grand has a simple pole at −i(g − 1). This is why we set p f (as an argument of the
integrand) equal to complex values in Eq. 57, even though (as an integration variable)
we have p f ∈ R

n in Eq. 56.
In principle, Theorem 4 could be justified by directly substituting P or ψ into the

relevant equations. A less cumbersome way to justify it, which is not reliant on Doi-
Peliti theory, is discussed in Appendix E. In some sense, all other results in this paper
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are corollaries of this result. But it is helpful to study the simpler cases in their own
right, both to double-check the correctness of this more general result, and to develop
a sense for how to derive these solutions.

While this result is shockingly general, it also appears to be incredibly formal.
Is reducing the problem of solving the CME (an infinite number of coupled linear
ODEs) to the problem of solving n (where n is the number of chemical species)
coupled nonlinear ODEs much of an improvement? Perhaps surprisingly, the answer
often seems to be yes. In the next two subsections, we will show why by considering
a few example systems.

Interestingly, the degree of nonlinearity that appears in the auxiliary ODEs above
depends upon a product of output molecule stoichiometries (for example: S → S +
S yields a q2 nonlinearity because there are two output molecules). Nonlinearities
in the corresponding reaction rate equations depend instead on a product of input
stoichiometries—and hence the reaction rate equations are linear for this class of
systems.

2.5 Some theoretical consequences of the general result

2.5.1 Solution to a nonlinear problem involving a single species

Consider the one species system whose reaction list consists of

∅
k−→ n · S

S
γ−→ m · S

(58)

for some integer n > 0 and m 	= 1. We have seen a few special cases already: the
case n = 1 and m = 0 corresponds to the birth-death process; the case n = 1 and
m = 2 corresponds to the birth-autocatalysis process (which can be obtained from our
birth-death-autocatalysis result by taking the death rate to zero); and other previously
seen special cases (e.g. pure birth, pure death, and pure autocatalysis) follow from
taking either k → 0 or γ → 0. The CME for this system reads

∂P(x, t)

∂t
= k [P(x − n, t) − P(x, t)]

+ γ [(x + 1 − m)P(x + 1 − m, t) − x P(x, t)] .

(59)

This is one of the simplest nontrivial examples of a system where one expects to run
into difficulties with applying Theorem 4; using it, we obtain a solution in terms of
highly nonlinear ODEs. In particular (taking w(s) := iq(s) + 1 for convenience), we
have to solve the auxiliary ODE

dw(s)

ds
= γ

[
w(s)m − w(s)

]
. (60)
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Suppose we are interesting in computing the generating function ψ(g, t). For sim-
plicity, we will take ξ = 0 and t0 = 0 and assume time-independent k and γ (this
does not affect our ability to get results, but does slightly affect the compactness of the
answer). Then our initial condition is w(0) = g. In terms of w(s), the full solution is

logψ(g, t) = k
∫ t

0

[
w(s)n − 1

]
ds . (61)

Can a highly nonlinear problem like this be solved using Theorem 4? It turns out that
the answer is yes.

Corollary 4 (Nonlinear one species system solution) Consider the system described
by Eq. 59, and assume P(x, 0) = δ(x) (i.e. there are initially no molecules in the
system). Define

r := n

1 − m

f (g, t) :=
(
eγ t

g

)m−1

+ 1 − eγ (m−1)t .

(62)

Then the probability generating function is given by

logψ(g, t) = k
∫ t

0

{
[ f (g, s)]r − 1

}
ds . (63)

Moreover, this integral can be evaluated explicitly. If g = 1, logψ = 0. If n = m − 1
and g 	= 1, the probability generating function is

ψ(g, t) =
[
eγ (m−1)t + gm−1

(
1 − eγ (m−1)t

)]− k
γ (m−1)

. (64)

Otherwise, for n 	= m − 1 and g 	= 1, the probability generating function is

logψ(g, t) = −k t + k

γ

f (g, t)r+1

n − m + 1
2F1 (1, r + 1; r + 2; f (g, t))

− k

γ

gn−m+1

n − m + 1
2F1

(
1, r + 1; r + 2; g1−m

) (65)

where 2F1 denotes the ordinary hypergeometric function. We can also derive the time-
dependent mean

〈x(t)〉 = kn

γ (1 − m)

[
1 − e(m−1)γ t

]
(66)

and time-dependent variance, which equals

var(x(t)) = 〈x(t)2〉 − 〈x(t)〉2 = k

γ

[
1 − e−γ t ] (67)
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if r = 1, and

var(x(t)) = kn(1 − r)

2γ

[(
e(m−1)γ t − 1

1 − r

)2

−
(
1 − 1

1 − r

)2
]

(68)

otherwise.

Proof The relevant ODE (Eq. 60) is separable; solving in the standard way, we obtain

w(s) = f (g, s)1/(1−m) . (69)

Now we have

logψ(g, t) = k
∫ t

0

{
[ f (g, s)]r − 1

}
ds . (70)

The nontrivial part of this integral (for g 	= 1) is of the form

∫ t

0

[
1 + AeBs

]r
ds (71)

for appropriate A and B; this integral is equal to

t − 1

B
log

(
1 + AeBt

1 + A

)
(72)

if r = −1, and

−
(
1 + AeBt

)r+1

B(r + 1)
2F1

(
1, r + 1; r + 2; 1 + AeBt

)

+ (1 + A)r+1

B(r + 1)
2F1 (1, r + 1; r + 2; 1 + A)

(73)

otherwise. Carrying out these integrals yields the generating function answers above.
Moments are most easily computed by taking derivatives of Eq. 63 directly. For exam-
ple,

〈x(t)〉 = ∂[logψ]
∂g

∣∣∣∣
g=1

= kn
∫ t

0
eγ (m−1)s ds

= kn

γ (1 − m)

[
1 − e(m−1)γ t

]
.

(74)

�
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On the other hand, it should be noted that the system described by Eq. 59 is very
special, and that although Eq. 60 is indeed nonlinear, it is an unusually tractable
nonlinear ODE. Modifying the reaction list (Eq. 58) by doing something as simple as
adding a degradation reaction (S → ∅) yields a problem that may not have a ‘nice’
closed form solution at all.

In other words, being able to obtain explicit generating function results (especially
time-dependent results rather than stationary results) is the exception rather than the
norm. For ‘most’ CMEs, even with only one chemical species, this appears to be
extremely challenging or impossible. This seems to be true whether or not one is
using the Doi-Peliti approach to derive solutions.

2.5.2 Stationary solution of the two-stage model of protein synthesis

One nontrivial and biologically important class of systems covered by this result is
all systems involving gene switching and/or protein dynamics. The most well-studied
CME involving proteins is the so-called two-stage model, involving two species (one
kind of mRNA and one kind of protein) and four reactions (transcription, translation,
mRNA degradation, and protein degradation). The reaction list is given by

∅
αm−→ m

m
αp−→ m + p

m
γm−→ ∅

p
γp−→ ∅

(75)

and the corresponding CME is

∂P(m, p, t)

∂t
= αm [P(m − 1, p, t) − P(m, p, t)]

+ αpm [P(m, p − 1, t) − P(m, p, t)]

+ γm [(m + 1)P(m + 1, p, t) − mP(m, p, t)]

+ γp [(p + 1)P(m, p + 1, t) − pP(m, p, t)] .

(76)

Note that we are using the symbol m here to denote mRNA counts, whereas we used
m to denote a stoichiometric coefficient in the previous example.

Although a problem like this looks innocuous, it is known to be somewhat difficult
to solve. The steady state solution was first computed by Bokes et al. (2012), and
the time-dependent solution was first given by Pendar et al. (2013). To showcase the
ability of Theorem 4 to deal with problems like this, we will show how it can be used
to straightforwardly obtain the steady state solution Pss(m, p) of Eq. 76.

Corollary 5 (Two-stage model steady state solution) Consider the system described by
Eq. 76. Define Gm := gm − 1 and G p := gp − 1 to ease notation. The steady state
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probability generating function, which is defined to be

ψss(gm, gp) =
∞∑

m=0

∞∑

p=0

Pss(m, p) (gm)m(gp)
p , (77)

is given by

logψss(gm, gp) = αm

γm

∞∑

n=0

∞∑

r=0

(−1)n
(

αp
γp
G p

)n+r

n!r ! [1 + n(γp/γm)
]
[ αp

γp
G p

n + r + 1
+ Gm

]
. (78)

Using it, we can compute moments like

〈m〉 = αm

γm

〈p〉 = αmαp

γmγp

var(m) − 〈m〉 = 0

var(p) − 〈p〉 = αm

γm

(
αp

γp

)2 γp

γm + γp

Cov(m, p) = αmαp

γmγp

γp

γm + γp
.

(79)

Proof The relevant auxiliary ODEs are given by (where we have relabeled iq1 and iq2
to m and p for better intuition)

dm(s)

ds
= −γmm(s) + αp p(s) [1 + m(s)]

dp(s)

ds
= −γp p(s)

(80)

where in this case (since we are interested in the steady state generating function) we
have m(0) = Gm and p(0) = Gp. Trivially, we have

p(s) = Gpe
−γps (81)

which means m(s) satisfies

dm(s)

ds
= −γmm(s) + αpG pe

−γps [1 + m(s)] (82)

i.e. a linear first order ODE with time-dependent coefficients. Using the usual inte-
grating factor method, we obtain

m(s) = Gme
− f (s) + αpe

− f (s)
∫ s

0
p(u)e f (u) du (83)
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where we define

f (s) := γms − αp

γp
G p

[
1 − e−γps

]
. (84)

This integral can be written more explicitly by Taylor expanding exp( f (u)), and
swapping the sum and integral. That is:

∫ s

0
p(u)e f (u) du = Gp

∫ s

0
e−γpue

γmu− αp
γp

G p
[
1−e−γpu

]
du

= Gpe
− αp

γp
G p

∫ s

0
e(γm−γp)ue

αp
γp

G pe−γpu

du

= Gpe
− αp

γp
G p

∞∑

r=0

(
αp
γp
G p

)r

r !
∫ s

0
e[γm−(r+1)γp]u du

= Gpe
− αp

γp
G p

∞∑

r=0

(
αp
γp
G p

)r

r !
(
e[γm−(r+1)γp]s − 1

)

γm − (r + 1)γp
.

(85)

To make doing this expansion slightly more straightforward, we have assumed γm 	=
γp; this assumption does not affect the final result, where the γm → γp limit can be
harmlessly taken. We can also expand exp(− f (s)) outside of the integral:

e− f (s) =
∞∑

n=0

∞∑

r=0

(−1)n
(

αp
γp
G p

)n+r

n!r ! e−(γm+nγp)s . (86)

All together, we can write m(s) as

m(s) = Gm

∞∑

n=0

∞∑

r=0

(−1)n
(

αp
γp
G p

)n+r

n!r ! e−(γm+nγp)s

+ αpG p

∞∑

n=0

∞∑

r=0

(−1)n
(

αp
γp
G p

)n+r

n!r !
[
e−(n+r+1)γps − e−(γm+nγp)s

]

γm − (r + 1)γp
.

(87)

In terms of m(s), the steady state generating function can be written

logψss(gm, gp) = αm

∫ ∞

0
m(s) ds (88)

where we have intentionally omitted the ξ -dependent factor. It does not contribute—
and in fact, the steady state solution does not depend on the system’s initial condition
(i.e. δ(m − ξm)δ(p − ξp) for some ξm, ξp ∈ N). This is because

[1 + m(∞)]ξm · [1 + p(∞)]ξp = 1 (89)
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since m(∞) = p(∞) = 0. Evaluating the integral, we have

logψss = αmGm

∞∑

n=0

∞∑

r=0

(−1)n
(

αp
γp
G p

)n+r

n!r !
1

γm + nγp

+ αmαpG p

∞∑

n=0

∞∑

r=0

(−1)n
(

αp
γp
G p

)n+r

n!r !

[
1

γp(n+r+1) − 1
γm+nγp

]

γm − (r + 1)γp
.

(90)

Noting that

1

γp(n + r + 1)
− 1

γm + nγp
= γm − (r + 1)γp[

γm + nγp
]
γp(n + r + 1)

, (91)

we can rearrange the above to obtain Eq. 78, the desired result. Moments can be
obtained by noting that the first few terms of Eq. 78 are

logψss(gm, gp) = αmαp

γmγp

[
Gp + γp

γm + γp

G2
p

2
+ · · ·

]

+ αm

γm
Gm

[
1 + γp

γm + γp

αp

γp
G p + · · ·

] (92)

and taking the appropriate derivatives:

∂ logψss

∂Gm

∣∣∣∣
Gm=Gp=0

= 〈m〉

∂ logψss

∂Gp

∣∣∣∣
Gm=Gp=0

= 〈p〉

∂2 logψss

∂G2
m

∣∣∣∣
Gm=Gp=0

= var(m) − 〈m〉

∂2 logψss

∂G2
p

∣∣∣∣∣
Gm=Gp=0

= var(p) − 〈p〉

∂2 logψss

∂Gm∂Gp

∣∣∣∣
Gm=Gp=0

= Cov(m, p) .

(93)

�

A quick bit of technical minutiae: naively, our expression for logψss(gm, gp) appears
different from the one in Bokes et al. (2012). In our notation, their solution (their Eq.
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22) reads

logψss(gm, gp) = αm

γp

∞∑

n=1

(
αp
γp
G p

)n

n
(
γm/γp

)
n

+ αm

γm
Gm

∞∑

n=0

(
αp
γp
G p

)n

(
1 + γm/γp

)
n

(94)

where (a)n denotes the Pochhammer symbol/rising factorial. One can show, either
using computer algebra software or by resumming one or the other series, that this is
precisely equal to Eq. 78. Also, as Bokes et al. note, this solution can be rewritten as

logψss(gm, gp) = αmαp

γmγp
G p

∫ 1

0
1F1

(
1; 1 + γm

γp
; αp

γp
sG p

)
ds

+ αm

γm
Gm 1F1

(
1; 1 + γm

γp
; αp

γp
G p

)
,

(95)

a form that is somewhat more useful for numerical implementations.
In general, because the class of all systems involving birth reactions and first order

reactions with at most two outputs yields Ricatti-like ODEs, an exact solution for
systems with arbitrary mRNA dynamics (e.g. transcription, splicing, and degradation
reactions) and protein dynamics (translation reactions) may be possible. But we will
not pursue this idea here.

See (Vastola et al. 2021a) for a recent treatment of the problem of a switching
gene coupled to mRNA dynamics, and (Vastola et al. 2021b) for what is essentially
an application of Theorem 4 to that system.

2.6 Some numerical consequences of the general result

While the theoretical results described in the previous subsection are interesting, they
may be far less practically relevant than the potential numerical applications of The-
orem 4. Numerically solving the CME is known to be a difficult problem, especially
when the number of species or typical molecule numbers in one’s system (i.e. the
effective dimensionality of the state space) get large.

Theorem 4 offers a new way to numerically compute CME solutions (for systems
involving only zero and first order reactions) that potentially has nontrivial speed and
parallelization advantages. Consider Eq. 57, the general expression we derived for
the probability generating function. The probability generating function is related to
the probability distribution via an inverse Fourier transform; in particular (using eiθ

instead of g for additional clarity), we have

ψ(θ, t) =
∞∑

x=0

P(x, t)eiθx

P(x, t) =
∫ π

−π

dθ

2π
e−iθxψ(θ, t)

(96)
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for one species models, and similar expressions for many species models. Theorem 4
says that we can compute CME solutions (for systems involving only zero and first
order reactions) using the following algorithm:

1. Numerically compute the solution of Eq. 55, a system of (possibly nonlinear)
ODEs, for various different initial conditions.

2. Numerically integrate those ODE solutions (to evaluate the integral in Eq. 57) to
obtain the probability generating function.

3. Use fast Fourier transform software packages to compute the inverse Fourier trans-
form, and hence obtain the desired solution.

To understand this idea more clearly, take the example of the birth-death-autocatalysis
system whose results are described in Sect. 2.3. Suppose we wanted to compute the
steady state probability distribution Pss(x). According to the above prescription, we
begin by writing down the nonlinear ODE

dx(s)

ds
= (c − γ )x(s) + cx(s)2 (97)

where x(s) := iq(s) and x(0) = g−1 = eiθ −1. In order to compute Pss(x), wemust
solve this ODE for sufficiently many g on the complex unit circle (or equivalently, for
sufficiently many θ ∈ [−π, π ]). The computation for one value of θ does not affect
the computation for another value of θ , so these computations can be done in parallel.

After numerically solving this ODE for many different initial conditions in parallel,
the steady state probability generating function can be obtained from

logψss(θ, t) = k
∫ ∞

0
x(s) ds (98)

using standard numerical integration methods like the trapezoidal rule. Then Pss(x)
can be recovered from exponentiating and inverse fast Fourier transforming this result.

Interestingly, this kindof approachmaybepreferable inmany situations to explicitly
solving for the probability generating function, even if a closed formanalytic solution is
available. This is because analytic solutionsmayhavenumerical stability problems (i.e.
taking some problem parameters very large or small may yield numerical overflow).
See (Vastola et al. 2021a) for some discussion of this in the context of an analytic
solution for a CME involving gene switching, transcription, and splicing.

This approach is also fast, comparing favorably with competing state of the art
methods like finite state projection (Munsky and Khammash 2006; Pele et al. 2006;
Fox et al. 2016; Fox and Munsky 2019). Modifying sparse-matrix-based optimized
finite state projection code from Fox and Munsky (2019) to solve the birth-death-
autocatalysis system and two-stagemodel, and varying state space size, we can see that
this ODE-based approach scales somewhat better as the state space size increases (Fig.
1). Furthermore, accuracy (as measured against the known exact results) is actually
found to be better using the ODE approach. This comparison is not meant to be
exhaustive or conclusive; however, what it does show is that the numerical approach
suggested by Theorem 4 is promising.
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Fig. 1 Timing and accuracy of novel ODE approach versus finite state projection. Black dots: finite
state projection (FSP). Red dots: the ODE approach described in this section. For two models (the birth-
death-autocatalysis model and the two-stage model) and different parameter sets, steady state probability
distributions were computed on a truncated state space using both finite state projection and the ODE
method. Because the state space has been truncated, both distributions correspond to vectors with nonnega-
tive entries in a finite-dimensional space. Runtime was measured in seconds, and accuracy was measured by
computing the usual L2 distance (for finite-dimensional vectors) between the obtained distributions and the
known exact results (Eq. 50 for birth-death-autocatalysis; Eq. 95 for the two-stage model). Distances were
scaled by a factor λ := 1/0.001 to make typical values around 1 for plotting. State space size—a measure
of howmany values of the probability distribution must be computed, and a factor known to be important in
FSP runtime—was defined in an ad-hoc way in terms of steady state moments to be 〈x〉 + 4

√
var(x) in the

birth-death-autocatalysis case (c.f. Eq. 50), and
[〈m〉 + 4

√
var(m)

] × [〈p〉 + 4
√
var(p)

]
in the two-stage

case (c.f. Eq. 79). For both models, FSP tended to take longer and be less accurate, especially as the state
space size increased. Birth-death autocatalysis parameters: γ = 1, c = 0.8, and k was varied between
10−100. Two-stage model parameters: αp = 10, γm = 20, γp = 1, and αm was varied between 330−800

We will not pursue the numerical applications of Theorem 4 further here, as the
focus of this paper is on its derivation. But we hope to study this novel numerical
approach to solving the CME in future work—for example, see (Vastola et al. 2021b)
for the application of Theorem 4 to efficient parameter inference for many-species
models of bursty transcription and splicing, and for a detailed discussion of how to
implement this numerical approach efficiently.

One should keep inmind that this numerical approach exclusively applies to systems
involving only zero and first order reactions, which means that many biologically
significant reaction types (especially binding reactions like A+B → C) are excluded.
It is unclear whether the strategy of reducing the problem of solving the CME to the
problem of numerically solving a system of n nonlinear ODEs, suitably modified,
might also apply to a broader class of systems.
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3 Reframing the problem and basic Doi-Peliti formalism

In this section, we describe the basic elements of the Doi-Peliti approach to solving the
CME. From here on out, wewill make extensive use of Dirac’s bra-ket notation instead
of notation more familiar to linear algebra and stochastic processes; this nonstandard
choice is justified, and the details of how this notation relates to standard notation are
briefly reviewed, in Appendix A.

Consider an arbitrary CME involving n ≥ 1 chemical species and M ≥ 1 chemical
reactions, which can be written (Gillespie 2000)

∂P(x, t)
∂t

=
M∑

j=1

a j (x − ν j , t)P(x − ν j , t) − a j (x, t)P(x, t) (99)

where the propensity function of the j th reaction is a j (x, t), and the stoichiometry
change associated with the j th reaction firing is ν j .

In order to apply the Doi-Peliti technique, we first need to rewrite the CME in terms
of states and operators in a certain Hilbert space. Consider an infinite-dimensional
Hilbert space spanned by the |x〉 states/basis vectors (where x = (x1, ..., xn)T ∈ N

n),
in which an arbitrary state |φ〉 is written

|φ〉 =
∞∑

x1=0

· · ·
∞∑

xn=0

c(x) |x〉 (100)

for some generally complex-valued coefficients c(x). These states can be added and
multiplied by (complex) scalars in the usual way.

There is one basis vector for every possible state x ∈ N
n of the system, which

we can write as either |x1x2 · · · xn〉 or |(x1, x2, ..., xn)〉. For example, we have basis
vectors |00 · · · 0〉, |01 · · · 0〉, |20, 45, 1, · · · 10〉, and so on; one interpretation of these
objects is that they encode a certain generalization of probability distributions on the
state space, given that they assign every x ∈ N

n a complex number6.
It should be noted that the basis vectors cannot be combined since they represent

distinct directions in the Hilbert space, i.e. |x〉+|y〉 	= |x + y〉. Wewill denote the zero
vector by 0, which we emphasize for clarity’s sake is distinct from the basis vector
|0〉 (e.g. |0〉 + 0 = |0〉). Two relevant inner products we can endow this space with
(without which we would just have a vector space) are described in Appendix B.4.

To ease notation, we remind the reader that we will write

∑

x

:=
∞∑

x1=0

· · ·
∞∑

xn=0

. (101)

6 We are essentially working in suitable 
2 spaces. But we will not worry too much about this, since
our methods have other more serious rigor-related issues (related to the delta function, swapping infinite
integrals, taking limits, etc.).
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The statewe are principally interested in is the generating function,which is essentially
the function ψ(g, t) described earlier, but using different notation. See Appendix A.3
for some discussion of how this notion of the generating function relates to the analytic
function construction usually used (i.e. the one that appears throughout Sect. 2).

Definition 1 The generating function is defined to be the state

|ψ(t)〉 :=
∑

x

P(x, t) |x〉 (102)

where P(x, t) is some solution to the CME (i.e. its precise form depends on the chosen
initial condition P(x, t0)).

For the rest of this paper, we will only be concerned with the case where P(x, t0) =
δ(x − ξ) for some ξ ∈ N

n (we remind the reader that δ here denotes the multivari-
ate generalization of the Kronecker delta function), so we will always assume that
|ψ(t0)〉 = |ξ〉.

Because the generating function |ψ(t)〉 depends on P(x, t), whose dynamics are
controlled by theCME, |ψ(t)〉 also has dynamics;we canwrite the equation controlling
them (its ‘equation of motion’) in the form

∂ |ψ〉
∂t

= Ĥ |ψ〉 (103)

where the Hamiltonian operator Ĥ is a linear operator whose precise form depends
on the CME. For the reader familiar with quantum mechanics, this is analogous to
the equation of motion for a quantum mechanical state. For the reader familiar with
stochastic processes, Ĥ is equivalent to the forward operator of the corresponding
Markov process, or the adjoint of its infinitesimal generator. In any case, it is this
equation that we will solve instead of the CME.

It may or may not be helpful for the reader to think of Ĥ as a (possibly infinite-
dimensional) matrix, and of Eq. 103 as a vector representation of the CME. Although
it is infinite-dimensional in essentially every case we care about in this paper, it would
literally be a matrix if we were solving a CME with a finite state space. One example
of a problem with a finite state space is the pure conversion process (A ↔ B), which
involves A molecules and B molecules randomly converting between each other; it
has a finite state space because the total number of molecules remains constant.

The core result of applying Doi-Peliti field theory to solving the CME is the fol-
lowing.

Theorem 5 (Doi-Peliti path integral solution) Consider an arbitrary CME (Eq. 99)
with initial condition P(x, t0) = δ(x− ξ) for some ξ ∈ N

n. The corresponding gener-
ating function satisfies Eq. 103 for some linear operator Ĥ . The Doi-Peliti approach
involves formally solving Eq. 103 via
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|ψ(t)〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

∣∣∣z f
〉
U (ip f , t; z0, t0)

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

(104)

where z0 and z f are both integrated over (0,∞)n, and p0 and p f are both integrated
over R

n. The ‘coherent state’
∣∣z f

〉
(for, in this case, some z f ∈ (0,∞)n ) can be

written

∣∣∣z f
〉
=

∑

y

zy11 · · · zynn
y1! · · · yn ! e

−(z1+···+zn) |y〉 =
∑

y

zy

y! e
−z·1 |y〉 . (105)

The function U (ip f , t; z0, t0) is the ‘propagator’, and equals the path integral

U = lim
N→∞

∫ N−1∏


=1

dz
dp


(2π)n
exp

{
N−1∑


=1

−ip
 · (z
 − z
−1) + Δt H(ip
, z
−1, t
−1)

+Δt H(ip f , zN−1, tN−1) + ip f · zN−1

} (106)

where Δt := (t − t0)/N. The ‘Hamiltonian kernel’H that appears in the above path
integral expression is equal to

H(ip, z, t) =
M∑

j=1

[
(1 + ip)ν j − 1

]∑

y

zy (1 + ip)y

y! e−z·(1+ip) a j (y, t) . (107)

The generating function solution (Eq. 104) can be directly converted into solutions
for the transition probability and moments. Using the shorthand P := P(x, t; ξ , t0)
and U := U (ip f , t; z0, t0), the transition probability equals

P = 1

x!
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

(
z f

)x
e−z f ·1 U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

. (108)

First order moments 〈xk(t)〉 (for some k = 1, ..., n) are equal to

〈xk(t)〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
k U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

. (109)

Obtaining higher order (factorial)moments involves replacing z f
k with the appropriate

product. For example:

〈
x j (t)xk(t)

〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

[
z f
j z

f
k

]
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

〈
x j (t)[x j (t) − 1]〉 =

∫
dz f dp f

(2π)n

dz0dp0

(2π)n

[
z f
j

]2
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

.

(110)
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We develop the Doi-Peliti machinery needed to establish the above result in Appendix
B. Knowing the associated technical details is not crucial for understanding the cal-
culations in the following two sections.

4 Monomolecular calculations

In this section, we present the calculations relevant to proving the formulas from
Theorems 1 and 2 using the Doi-Peliti approach. First, we evaluate the path integral
expression for the propagator U . Then we use the explicit form of the propagator to
derive the transition probability and several moments. We do not explicitly show how
to compute the generating function directly from the propagator, because it is very
similar to the other calculations.

4.1 Evaluating the propagator path integral

In this section, we will evaluate the path integral expression for the propagator U
(Eq. 106) given our specific dynamics, which are captured by the Hamiltonian kernel
H. We make free use of a formal integral representation of the Dirac delta function.
According to Appendix C, for monomolecular systems

−iH(ip
, z
−1, t
−1) =
n∑

k=1

c0k(t
−1)p


k −

n∑

k=1

ck0(t
−1)p


k z


−1
k

+
n∑

j=1

n∑

k=1

c jk(t
−1)
[
p

k − p


j

]
z
−1
j .

(111)

Lemma 1 (Monomolecular propagator) The propagator for the monomolecular sys-
tem is

U (ip f , t; z0, t0) = eip
f ·z(t) (112)

where

z(t) :=
n∑

k=1

z0kw
(k)(t) + λ(t) (113)

with w(k)(t) and λ(t) as defined in Theorem 2.

Proof Begin with the path integral expression for U (Eq. 106). Let us first integrate
over the p


k (where 
 ∈ {1, ..., N − 1} and k ∈ {1, ..., n}). For fixed 
 and k, these
integrals look like

∫ ∞

−∞
dp


k

2π
exp

⎧
⎨

⎩−i p

k

⎡

⎣(z
k − z
−1
k ) − Δt

⎛

⎝ c
−1
0k − c
−1

k0 z
−1
k +

n∑

j=1

c
−1
jk z
−1

j − c
−1
k j z
−1

k

⎞

⎠

⎤

⎦

⎫
⎬

⎭

(114)
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where c
−1
jk is shorthand for c jk(t
−1). Using the usual integral representation of the

Dirac delta function, these integrals are easily done to obtain n · (N −1) delta function
constraints:

δ

⎡

⎣(z
k − z
−1
k ) − Δt

⎛

⎝ c
−1
0k − c
−1

k0 z
−1
k +

n∑

j=1

c
−1
jk z
−1

j − c
−1
k j z
−1

k

⎞

⎠

⎤

⎦ .

(115)

Fortunately, that is exactly how many integrals we have left to do. Notice that the
constraints force

z
k = z
−1
k + Δt

⎛

⎝ c
−1
0k − c
−1

k0 z
−1
k +

n∑

j=1

c
−1
jk z
−1

j − c
−1
k j z
−1

k

⎞

⎠ (116)

which exactly corresponds to taking an Euler time step given the deterministic dynam-
ics described by the reaction rate equations, Eq. 20. What remains of our calculation
is to evaluate

U = lim
N→∞ exp

{
Δt H(ip f , zN−1, tN−1) + ip f · zN−1

}
(117)

given Eq. 116, the constraint on zN−1 relating it (via (N − 1) Euler time steps) to z0.
We have

ip f · zN−1 + Δt H(ip f , zN−1, tN−1)

=i
n∑

k=1

p f
k

⎧
⎨

⎩zN−1
k + Δt

⎡

⎣ cN−1
0k − cN−1

k0 zN−1
k +

n∑

j=1

cN−1
jk zN−1

j − cN−1
k j zN−1

k

⎤

⎦

⎫
⎬

⎭

=i
n∑

k=1

p f
k z

N
k

(118)

where we define zNk as the result of taking N time steps of length Δt according to Eq.
116 given the initial condition z0k . In the N → ∞ limit, zNk → zk(t), where zk(t) is
defined as the kth component of the solution to Eq. 20. As described in Sect. 2, z(t)
can be decomposed in terms of λ(t) and the w(k)(t). �

While it may seem like this path integral calculation was completely trivial, it
is simple mostly because we put in the legwork to define and characterize the
Grassberger-Scheunert product (in Appendix B.4) beforehand. Had we constructed
a path integral based on the exclusive product instead of the Grassberger-Scheunert
product, this calculation would have involved extra steps. These extra steps would
either involve dealing with extra terms after enforcing the delta function constraints,
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or shifting integration variables in a mathematically dubious way (i.e. making the
so-called Doi shift).

Now that we have computed the propagatorU , Theorem 5 tells us how to derive the
transition probability and moments. Because the transition probability and moment
calculations are somewhat involved, we first present them for the one species system
(i.e. the chemical birth-death process).

4.2 One species transition probability derivation

Lemma 2 (One species monomolecular transition probability) For the single species
monomolecular system (i.e. the chemical birth-death process), the transition proba-
bility P(x, t; ξ, t0) is

P =
min(x,ξ)∑

k=0

[
λ(t)x−ke−λ(t)

(x − k)!

][(
ξ

k

)
w(t)k[1 − w(t)]ξ−k

]

= P(x, λ(t))	M(x, ξ, w(t))

(119)

where w(t) and λ(t) are as defined in Theorem 1.

Proof Using Eq. 108, we have

P(x, t; ξ, t0) = 1

x !
∫

dz f dp f

2π

dz0dp0

2π

(
z f

)x
e−z f eip

f z(t)(1 + i p0)ξ e−i p0z0−i p f z f .(120)

The integral over p f is easily done:

∫ ∞

−∞
dp f

2π
eip

f [z(t)−z f ] = δ(z(t) − z f ) . (121)

Enforcing the delta function constraint removes the integral over z f . Since z(t) =
z0w(t) + λ(t),

P = 1

x !
∫

dz0dp0

2π

[
z0w(t) + λ(t)

]x
e−[z0w(t)+λ(t)] (1 + i p0)ξ e−i p0z0

= e−λ(t)

x !
∫

dz0dp0

2π

[
z0w(t) + λ(t)

]x
ez

0[1−w(t)] (1 + i p0)ξ e−z0[1+i p0] .

(122)

This can be rewritten as

P = e−λ(t)

x !
∫

dz0dp0

2π

[
z0w(t) + λ(t)

]x
ez

0[1−w(t)]
(

− d

dz0

)ξ

e−z0[1+i p0]

= e−λ(t)

x !
∫

dz0dp0

2π

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]x
ez

0[1−w(t)]} e−z0[1+i p0]
(123)
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where we integrated by parts in the second step. The p0 integral can now be done:

∫ ∞

−∞
dp0

2π
e−i p0z0 = δ(z0) . (124)

We now have

P = e−λ(t)

x !
∫ ∞

0
dz0

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]x
ez

0[1−w(t)]} e−z0δ(z0) . (125)

If we can evaluate the derivative, then we can easily evaluate the integral using the
delta function. Using the binomial theorem,

[
z0w(t) + λ(t)

]x =
x∑

k=0

(
x

k

)
w(t)kλ(t)x−k

(
z0

)k
. (126)

Since

(
z0

)k
ez

0[1−w(t)] =
∞∑

j=0

(
z0

) j+k [1 − w(t)] j
j ! , (127)

the derivative of a specific term is

(
d

dz0

)ξ {(
z0

)k
ez

0[1−w(t)]
}

=
∞∑

j=0

( j + k)( j + k − 1) · · · ( j + k − ξ + 1)
(
z0

) j+k−ξ [1 − w(t)] j
j ! .

(128)

When enforcing the delta function constraint that z0 = 0, all terms will disappear from
this series except for the constant term. The constant term is the term with j + k = ξ ,
which reads

ξ !
(ξ − k)! [1 − w(t)]ξ−kθ(ξ − k) (129)

where the step function θ , defined as

θ(ξ − k) :=
{
1 k ≤ ξ

0 k > ξ
(130)
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must be there since the result will be zero if k > ξ . Hence,

P = e−λ(t)

x !
x∑

k=0

(
x

k

)
w(t)kλ(t)x−k ξ !

(ξ − k)! [1 − w(t)]ξ−kθ(ξ − k)

= e−λ(t)
min(x,ξ)∑

k=0

(
ξ

k

)
w(t)kλ(t)x−k 1

(x − k)! [1 − w(t)]ξ−k

=
min(x,ξ)∑

k=0

[
λ(t)x−ke−λ(t)

(x − k)!

][(
ξ

k

)
w(t)k[1 − w(t)]ξ−k

]

= P(x, λ(t))	M(x, ξ, w(t))

(131)

as desired. �

4.3 General transition probability derivation

Lemma 3 (Monomolecular transition probability) For the general monomolecular
system, the transition probability P(x, t; ξ , t0) is

P = P(x,λ(t))	M(x, ξ1,w(1)(t))	 · · · 	M(x, ξn,w(n)(t)) (132)

where λ(t) and the w( j)(t) are as defined in Theorem 2.

Proof The general case proceeds analogously to the one species case. The main dif-
ference is that we must do the appropriate multivariable generalization of each of
the steps in the previous subsection (e.g. use the multinomial theorem instead of the
binomial theorem). Using Eq. 108,

P(x, t; ξ , t0)= 1

x!
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

(
z f

)x
e−z f ·1 eip f ·z(t)(1 + ip0)ξ e−ip0·z0−ip f ·z f

.

(133)

The integrals over p f
1 , ..., p f

n yield delta functions:

∫
dp f

(2π)n
eip

f ·[z(t)−z f ] = δ(z1(t) − z f
1 ) · · · δ(zn(t) − z f

n ) = δ(z(t) − z f ) . (134)

Enforcing the delta function constraints removes the integrals over z f
1 , ..., z f

n . Using
Eq. 113,

P = 1

x!
∫

dz0dp0

(2π)n

[
n∑

k=1

z0kw
(k) + λ

]x

e−[∑n
k=1 z

0
kw

(k)+λ]·1 (1 + ip0)ξ e−ip0·z0

= e−|λ(t)|

x!
∫

dz0dp0

(2π)n

[
n∑

k=1

z0kw
(k) + λ

]x

e
∑n

k=1 z
0
k

(
1−|w(k)|) (1 + ip0)ξ e−z0·[1+ip0] .

(135)
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Reusing the notation we used earlier to denote many derivatives with respect to each
variable (Eq. 263), we can rewrite this result as

P = e−|λ(t)|

x!
∫

dz0dp0

(2π)n

[
n∑

k=1

z0kw
(k) + λ

]x

e
∑n

k=1 z
0
k

(
1−|w(k)|)

(
− d

dz0

)ξ

e−z0·[1+ip0]

= e−|λ(t)|

x!
∫

dz0dp0

(2π)n

(
d

dz0

)ξ
{[

n∑

k=1

z0kw
(k) + λ

]x

e
∑n

k=1 z
0
k

(
1−|w(k)|)

}
e−z0·[1+ip0]

(136)

where we integrated by parts many times in the second step. The p01, ..., p
0
n integrals

can now be done:

∫
dp0

(2π)n
e−ip0·z0 = δ(z01) · · · δ(z0n) = δ(z0) . (137)

We now have

P = e−|λ(t)|

x!
∫

dz0
(

d

dz0

)ξ
{[

n∑

k=1

z0kw
(k) + λ

]x

e
∑n

k=1 z
0
k

(
1−|w(k)|)

}
e−z0·1δ(z0).

(138)

If we can evaluate the derivative, then we can easily evaluate the integral using the
delta function. Recall that

[
n∑

k=1

z0kw
(k) + λ

]x

=
[

n∑

k=1

z0kw
(k)
1 + λ1

]x1

· · ·
[

n∑

k=1

z0kw
(k)
n + λn

]xn

. (139)

Using the multinomial theorem,

[
n∑

k=1

z0kw
(k)
j + λ j

]x j

=
∑

v
j
1+···v j

n+1=x j

(
x j

v
j
1 · · · v j

n+1

)[
z01w

(1)
j

]v
j
1 · · ·

[
z0nw

(n)
j

]v
j
n [

λ j
]v j

n+1

(140)

for each j = 1, ..., n.Write |v
| := v1
+· · ·+vn
 . Putting thesemultinomial expansions
together, our integral now involves computing n expressions of the form

(
d

dz0


)ξ
 {[
z0


]|v
| ez0

(
1−|w(
)|)}

∣∣∣∣∣∣
z0
=0

= ξ
!
(ξ
 − |v
|)!

(
1 − |w(
)|

)ξ
−|v
|
θ(ξ
 − |v
|)

(141)
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where we have used the result from earlier (Eq. 129) to evaluate it. When enforcing
the delta function constraint that z0
 = 0 for all 
 = 1, ..., n, we get

e−|λ(t)|

x!
∑

v
j
k

⎧
⎨

⎩

n∏

j=1

(
x j

v
j
1 · · · v j

n+1

)[
w

(1)
j

]v
j
1 · · ·

[
w

(n)
j

]v
j
n [

λ j
]v j

n+1
ξ j !

(ξ j − |v j |)!
(
1 − |w( j)|

)ξ j−|v j |
θ(ξ j − |v j |)

⎫
⎬

⎭

(142)

for P . This is the final result, but let us rewrite it so that we recover the result from
Theorem 1 (Eq. 31) of Jahnke and Huisinga’s paper. Note that

e−|λ(t)|
n∏

j=1

[
λ j

]v j
n+1

v
j
n+1!

= λ(t)vn+1

vn+1! e−|λ(t)| = P(vn+1,λ(t)) . (143)

Also,

ξk !
(
1 − |w(k)|)ξk−|vk |

(ξk − |vk |)! θ(ξk − |vk |)
n∏

j=1

[
w

(k)
j

]v
j
k

v
j
k !

=ξk !
(
1 − |w(k)|)ξk−|vk |

(ξk − |vk |)! θ(ξk − |vk |)
[
w(k)

]vk

vk !
=M(vk, ξk,w(k)) .

(144)

We are left with

P =
∑

v
j
k

P(vn+1,λ(t)) M(v1, ξ1,w(1)) · · ·M(vn, ξn,w(n))

=
∑

v
j
k

P(x − v1 − · · · − vn,λ(t)) M(v1, ξ1,w(1)) · · ·M(vn, ξn,w(n))

= P(x,λ(t))	M(x, ξ1,w(1)(t))	 · · · 	M(x, ξn,w(n)(t))

(145)

which matches Eq. 31. �

If we wanted to compute the moments of P(x, t), we could just use Eq. 31 and
carry out the calculation directly; however, the Doi-Peliti approach offers a way to
compute moments which bypasses P(x, t) completely. In other words, if we are only
interested in moments, the work from the previous section is unnecessary. Instead, we
can use Eq. 109 and Eq. 110 from Theorem 5. As with the previous calculation, we
will warm up with the one species case before treating the multi-species case.
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4.4 One species moments derivation

Lemma 4 (One species monomolecular moments) For the single species monomolec-
ular system (i.e. the chemical birth-death process), the first and second factorial
moments are

〈x(t)〉 = ξw(t) + λ(t)

〈x(t)[x(t) − 1]〉 = w(t)2ξ(ξ − 1) + 2λ(t)w(t)ξ + λ(t)2
(146)

where w(t) and λ(t) are as defined in Theorem 1.

Proof Using Eq. 109,

〈x(t)〉 =
∫

dz f dp f

2π

dz0dp0

2π
z f eip

f z(t)(1 + i p0)ξ e−i p0z0−i p f z f . (147)

The p f , z f , and p0 integrals can be done as in Sect. 4.2, leaving

〈x(t)〉 =
∫ ∞

0
dz0

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]
ez

0
}
e−z0δ(z0) . (148)

The derivative is easily evaluated, and we obtain

〈x(t)〉 =
∫ ∞

0
dz0

[
ξw(t)ez

0 + z(t)ez
0
]
e−z0δ(z0) = ξw(t) + λ(t) , (149)

which is just the solution to the one species reaction rate equation with x(t0) = ξ , just
as expected. The second factorial moment can be computed in similar fashion:

〈x(t)[x(t) − 1]〉 =
∫

dz f dp f

2π

dz0dp0

2π

(
z f

)2
eip

f z(t)(1 + i p0)ξ e−i p0z0−i p f z f

=
∫ ∞

0
dz0

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]2
ez

0
}

e−z0δ(z0)

= w(t)2ξ(ξ − 1) + 2λ(t)w(t)ξ + λ(t)2 .

(150)

�
Higher factorial moments can be computed in exactly the same way.

4.5 General moments derivation

Unlike in the one species case, there are many first moments: 〈x1(t)〉 , ..., 〈xn(t)〉.
There are also many second moments. To summarize them usefully, we compute the
covariance matrix elements (i.e. Cov(x j , x
) := 〈x j (t)x
(t)〉 − 〈x j (t)〉〈x
(t)〉 for all
pairs of j and 
).
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Lemma 5 (Monomolecular moments) For the general monomolecular system, the first
moments, second factorial moments, and covariance matrix elements are given by

〈
x j (t)

〉 =
n∑

k=1

ξkw
(k)
j (t) + λ j (t) j = 1, ..., n

〈
x j x


〉 =
n∑

k=1

n∑

k′=1

ξkξk′w(k)
j w

(k′)



+
n∑

k=1

ξk

[
w

(k)
j λ
 + w

(k)

 λ j − w

(k)
j w

(k)



]
+ λ jλ
 j 	= 


〈
x j (t)[x j (t) − 1]〉 =

n∑

k=1

n∑

k′=1

ξkξk′w(k)
j w

(k′)
j

+
n∑

k=1

ξk

[
2w(k)

j λ j −
(
w

(k)
j

)2] + λ2j j = 1, ..., n

Cov(x j , x
) =
{∑n

k=1 ξkw
(k)
j

[
1 − w

(k)
j

]
+ λ j j = 


−∑n
k=1 ξkw

(k)
j w

(k)

 j 	= 


(151)

where λ(t) and the w( j)(t) are as defined in Theorem 2.

Proof Picking a specific x j and using Eq. 109, we have

〈
x j (t)

〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
j eip

f ·z(t)(1 + ip0)ξ e−ip0·z0−ip f ·z f
. (152)

The p f , z f , and p0 integrals can be done as in Sect. 4.3, yielding

〈
x j (t)

〉 =
∫

dz0
(

d

dz0

)ξ
{[

n∑

k=1

z0kw
(k)
j + λ j

]
ez

0·1
}

e−z0·1δ(z0)

=
n∑

k=1

ξkw
(k)
j (t) + λ j (t)

(153)

which is the j th component of the solution to Eq. 20 with x(t0) = ξ .
Let us compute

〈
x j (t)x
(t)

〉
for j 	= 
. To start off,

〈
x j (t)x
(t)

〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
j z

f

 eip

f ·z(t)(1 + ip0)ξ e−ip0·z0−ip f ·z f
. (154)
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Proceeding as we just did, we obtain

〈
x j x


〉 =
∫

dz0
(

d

dz0

)ξ
{[

n∑

k=1

z0kw
(k)
j + λ j

][
n∑

k′=1

z0k′w
(k′)

 + λ


]
ez

0·1
}

e−z0·1δ(z0)

=
n∑

k=1

n∑

k′=1

ξkξk′w(k)
j w

(k′)

 +

n∑

k=1

ξk

[
w

(k)
j λ
 + w

(k)

 λ j − w

(k)
j w

(k)



]
+ λ jλ
 .

(155)

For the similar case j = 
, we obtain

〈
x j (t)[x j (t) − 1]〉 =

∫
dz0

(
d

dz0

)ξ

⎧
⎨

⎩

[
n∑

k=1

z0kw
(k)
j + λ j

]2

ez
0·1

⎫
⎬

⎭ e−z0·1δ(z0)

=
n∑

k=1

n∑

k′=1

ξkξk′w(k)
j w

(k′)
j +

n∑

k=1

ξk

[
2w(k)

j λ j −
(
w

(k)
j

)2] + λ2j .

(156)

Putting these results together, we find that the covariance of x j and x
 is

Cov(x j , x
) =
{∑n

k=1 ξkw
(k)
j

[
1 − w

(k)
j

]
+ λ j j = 


−∑n
k=1 ξkw

(k)
j w

(k)

 j 	= 


. (157)

Hence, we have recovered the moment results from Sect. 4.2 of Jahnke and Huisinga.
�

5 Birth-death-autocatalysis calculations

In this section, we present the calculations relevant to proving the formulas from
Theorem 3 on the birth-death-autocatalysis system. First, we evaluate the path integral
expression for the propagator U . Then we use the explicit form of the propagator to
derive the transition probability, and several interesting limiting forms of it. We do not
explicitly show how to compute the generating function directly from the propagator,
because it is very similar to the other calculations.

5.1 Evaluating the propagator

According to Appendix C, for the birth-death-autocatalysis system we have

H(i p, z, t) = i p
[
k + (c − γ )z

] − c p2z . (158)

This propagator calculation is somewhat more involved than the one for the
monomolecular system.
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Lemma 6 (Birth-death-autocatalysis propagator) The propagator for the birth-death-
autocatalysis system is

U (i p f , t; z0, t0) = exp

{
i z0q(t) + i

∫ t

t0
k(s)q(t − s + t0) ds

}
(159)

where q(s) is as in Theorem 3.

Proof The path integral expression for the propagator U (i p f , z0) is

U = lim
N→∞

∫ N−1∏


=1

dz
dp


2π
exp

{
N−1∑


=1

−i p
(z
 − z
−1) + ΔtH(i p
, z
−1, t
−1)

+ΔtH(i p f , zN−1, tN−1) + i p f zN−1

} (160)

where we have used slightly different notation than before since there is only one
chemical species. In order to evaluate this path integral, first integrate over each z
,
and then integrate over each p
. Collecting terms containing z
, the integral over each
z
 looks like

∫ ∞

0

dz

2π

exp
{
z


[
−c
Δt p2
+1 + i(c
 − γ
)Δt p
+1 − i(p
 − p
+1)

]}

= 1

2π i

1

(p
 − p
+1) − Δt
[
(c
 − γ
) p
+1 + ic
 p2
+1

] .

(161)

The integrals over p
 can now be done—but they must be done in a specific order.
Do the integral over pN−1, then pN−2, and so on, until the integral over p1 has been
done. Each of these integrals is schematically

1

2π i

∫ ∞

−∞
dp


f (p
)

(p
 − p
+1) − Δt
[
(c
 − γ
) p
+1 + ic
 p2
+1

] (162)

where the function f (p
) has no poles. This means that each integral can be evaluated
using Cauchy’s integral formula, so that the net effect of doing them is to enforce the
(N − 1) constraints

p
 = p
+1 + Δt
[
(c
 − γ
) p
+1 + ic
 p2
+1

]
(163)

on the p
 for 
 = 1, ..., N − 1. There are no more integrals to do, so all that remains
is to evaluate what’s left of the propagator using these constraints. Eq. 163 looks like
an Euler time step, although it is ‘backwards’—we go from p
+1 to p
 instead of the
other way around. Define qN−
 := p
 so that it reads

qN−
 = qN−
−1 + Δt
[
(c
 − γ
) qN−
−1 + ic
 q

2
N−
−1

]
. (164)
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Choosing 
 = N − n, we find

qn = qn−1 + Δt
[
(cN−n − γN−n) qn−1 + icN−n q

2
n−1

]
. (165)

This corresponds to dynamics

dq(s)

ds
= [

c(t − s + t0) − γ (t − s + t0)
]
q(s) + ic(t − s + t0) q(s)2 (166)

where s ∈ [t0, t] and q(t0) = p f . As can be verified by substitution, Eq. 166 is solved
by

q(s) = w(s)
1
p f

− i
∫ s
t0
c(t − t ′ + t0)w(t ′) dt ′

(167)

where w(t) is the solution to

dw(s)

ds
= [c(t − s + t0) − γ (t − s + t0)] w(s) (168)

with w(t0) = 1 (c.f. Eq. 30), i.e.

w(s) = e
∫ s
t0
c(t−t ′+t0)−γ (t−t ′+t0) dt ′ . (169)

The continuous limit of Eq. 163 is then p(s) := q(t − s + t0). With that done, the
propagator with most terms integrated out reads

U = lim
N→∞ exp

{
i
N−1∑


=1

k
−1 p
 Δt + i p1z0 + Δt
[
i p1(c0 − γ0)z0 − c0 p

2
1z0

]}
.

(170)

The term on the right is just another Euler time step, so we can write it as

i z0
{
p1 + Δt

[
p1(c0 − γ0) − c0 p

2
1

]}
= i z0 p0 (171)

where we define

p0 := p1 + Δt
[
p1(c0 − γ0) − c0 p

2
1

]
. (172)

In the limit as N → ∞, p0 → p(t0) = q(t). The term on the left is just a Riemann
sum:

N−1∑


=1

k
−1 p
 Δt ≈
∫ t

t0
k(s)p(s) ds =

∫ t

t0
k(s)q(t − s + t0) ds . (173)
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Hence, our final answer for the propagator U is

U (i p f , t; z0, t0) = exp

{
i z0q(t) + i

∫ t

t0
k(t − s + t0)q(s) ds

}
(174)

where we have reparameterized the integral on the right to swap s and (t − s + t0). �
The above calculation strategy, which involved converting the evaluation of many

contour integrals into the problem of solving a nonlinear ODE, is somewhat dubious;
we did not properly verify that the conditions of Cauchy’s integral formula were
satisfied. Nonetheless, this strategy turns out to be very powerful, as it enables us
to find a much more general result for systems involving only zero and first order
reactions (see Appendix D).

As an aside, we note that this calculation closely resembles the Martin-Siggia-
Rose-Janssen-De Dominicis path integral computation from our earlier paper (Vastola
2019b): in particular, many applications of Cauchy’s integral formula and another
‘backwards’ Euler time step constraint are both involved.

5.2 Deriving the transition probability

As in Sect. 4.2 and 4.3, we will use the propagator derived in the previous section to
derive an expression for the transition probability P(x, t; ξ, t0).

Lemma 7 (Birth-death-autocatalysis transition probability) For the birth-death-
autocatalysis system, the transition probability P(x, t; ξ, t0) is

P(x, t; ξ, t0) = 1

2π

∫ ∞

−∞
dp f

[1 + iq(t)]ξ ei
∫ t
t0
k(t−s+t0)q(s)ds

(1 + i p f )x+1
(175)

where q(s) is as in Theorem 3.

Proof Using Eq. 108, we have

P(x, t; ξ, t0) = 1

x !
∫

dz f dp f

2π

dz0dp0
2π

(
z f

)x
e−z f ×

× e
iz0q(t)+i

∫ t
t0
k(t−s+t0)q(s) ds

(1 + i p0)
ξ e−i p0z0−i p f z f .

(176)

The integral over z0 is

∫ ∞

0

dz0
2π

e−i z0[p0−q(t)] = 1

2π i

1

p0 − q(t)
. (177)

The integral over p0 can be performed using Cauchy’s integral formula:

1

2π i

∫ ∞

−∞
dp0

(1 + i p0)ξ

p0 − q(t)
= [1 + iq(t)]ξ . (178)
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The integral over z f can be recognized as a Laplace transform:

∫ ∞

0
dz f

(
z f

)x
e−z f [1+i p f ] = x !

(
1 + i p f

)x+1 . (179)

Putting these together, we obtain the desired result. �
We will leave our solution in this form, since it is difficult to evaluate the contour
integral without knowing the explicit time-dependence of the rates. In the next few
sections, we will examine a few special cases.

5.3 Time-independent rates

Lemma 8 (Birth-death-autocatalysis transitionprobability for time-independent rates)
Suppose the parameters k, γ , and c are all time-independent and non-zero. Then the
transition probability can be rewritten as

P =
(

γ
c − 1
γ
c − w

)k/c
(1 − w)x−ξ

( γ
c − w

)x ×

×
ξ∑

j=0

(
ξ

j

)
( j + k/c)x

x !
[
1 − γ

c
w

]ξ− j
[

w
( γ
c − 1

)2
γ
c − w

] j (180)

where (y)x := (y)(y + 1) · · · (y + x − 1) is the Pochhammer symbol/rising factorial,
and where w(t) = e−(γ−c)(t−t0).

Proof In this case, q(t) reads

q̇ = [c − γ ] q + ic q2

q(t) = e(c−γ )T

1
p f

− i c
c−γ

[
e(c−γ )T − 1

] = w(t)
1
p f

− i c
c−γ

[w(t) − 1]

(181)

where T := t − t0. We have

∫ t

t0
q(s) ds = i

c
log

{
1 − ic

c − γ

[
e(c−γ )T − 1

]
p f

}
(182)

so that the convolution term from the propagator reads

e
ik

∫ t
t0
q(s) ds = 1

[
1 − ic

c−γ

[
e(c−γ )T − 1

]
p f

]k/c = 1
[
1 − i B(t)p f

]k/c (183)

where we define

B(t) := c

c − γ
[w(t) − 1] . (184)
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It is important to note that Eq. 183 has no poles in the upper half-plane (the region
around which we are integrating), regardless of whether c − γ > 0, c − γ < 0, or
c = γ . Next,

1 + iq(t) = 1 + iw(t)p f

1 − i B(t)p f
=

[
1 − w(t)

B(t)

]
+ w(t)

B(t)

1[
1 − i B(t)p f

] (185)

so that

[1 + iq(t)]ξ =
ξ∑

j=0

(
ξ

j

)[
1 − w(t)

B(t)

]ξ− j (
w(t)

B(t)

) j 1
[
1 − i B(t)p f

] j . (186)

Putting all these results together, our expression for the transition probability is

P =
ξ∑

j=0

(
ξ

j

)[
1 − w(t)

B(t)

]ξ− j (
w(t)

B(t)

) j 1

x ! i x

×
{

x !
2π i

∫ ∞

−∞
dp f

1
[
1 − i B(t)p f

] j+k/c

1

(p f − i)x+1

}
. (187)

Since

dx

dpxf

[
1

[
1 − i B(t)p f

] j+k/c

]

p=i

= i x B(t)x

[1 + B(t)] j+k/c+x

(
j + k

c

)(
j + k

c
+ 1

)
· · ·

(
j + k

c
+ x − 1

)
(188)

we have

P =
ξ∑

j=0

(
ξ

j

)[
1 − w(t)

B(t)

]ξ− j (
w(t)

B(t)

) j
( j + k/c)x

x !
B(t)x

[1 + B(t)] j+k/c+x

=
(
1 − γ

c

w − γ
c

)k/c (
w − 1

w − γ
c

)x ξ∑

j=0

(
ξ

j

)
( j + k/c)x

x !

×
[
1 −

(
1 − γ

c

) w

w − 1

]ξ− j
[

w
(
1 − γ

c

)2

(w − 1)(w − γ
c )

] j

=
(

γ
c − 1
γ
c − w

)k/c
(1 − w)x−ξ

( γ
c − w

)x ×

×
ξ∑

j=0

(
ξ

j

)
( j + k/c)x

x !
[
1 − γ

c
w

]ξ− j
[

w
( γ
c − 1

)2
γ
c − w

] j

(189)
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where (y)x := (y)(y + 1) · · · (y + x − 1) is the Pochhammer symbol/rising factorial.
This can also be written in terms of the hypergeometric function 2F1(a, b; c; x). �

5.4 Binomial, Poisson, and negative binomial special cases

Proof (Corollary 2) Return to the original contour integral for time-dependent rates
(Eq. 40), and set k = c = 0, but leave the time-dependence of γ (t) arbitrary. We have

w(t) := exp

[
−

∫ t

t0
γ (t ′)dt ′

]
(190)

q(t) = w(t)p f (191)

P(x, t; ξ, t0) = 1

2π

∫ ∞

−∞
dp f

[
1 + iw(t)p f

]ξ

(1 + i p f )x+1 . (192)

The function in the numerator has no poles, so the contour integral can easily be
evaluated using Cauchy’s integral formula. The result is

P(x, t; ξ, t0) =
(

ξ

x

)
[w(t)]x [1 − w(t)]ξ−x (193)

for x ≤ ξ and 0 otherwise, i.e. a binomial distribution.
Return to the original contour integral for time-dependent rates (Eq. 40), and set

γ = c = 0, but leave the time-dependence of k(t) arbitrary. We have

λ(t) :=
∫ t

t0
k(t ′)dt ′ (194)

q(t) = p f (195)

P(x, t; ξ, t0) = 1

2π

∫ ∞

−∞
dp f

eiλ(t)p f

(1 + i p f )x+1−ξ
. (196)

This contour integral can be evaluated using either Cauchy’s integral formula or a
table of integrals (c.f. Gradshteyn and Ryzhik (2014) ET I 118(3), in section 3.382,
on pg. 365). The result is

P(x, t; ξ, t0) = λ(t)x−ξ e−λ(t)

(x − ξ)! (197)

for x ≥ ξ and 0 otherwise, i.e. a (shifted) Poisson distribution.
Return to the original contour integral for time-dependent rates (Eq. 40), and set

k = γ = 0, but leave the time-dependence of c(t) arbitrary. In this case, we will define
w(t) differently from before as

w(t) := exp

[
−

∫ t

t0
c(t ′)dt ′

]
(198)
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i.e. as the reciprocal of what we previously called w(t). This is to match the result
from Jahnke and Huisinga. Now we have

q(t) = w(t)−1

1
p f

− i
[
w(t)−1 − 1

] (199)

P(x, t; ξ, t0) = 1

2π

∫ ∞

−∞
dp f

1

(1 + i p f )x−ξ+1

1
[
1 − i(w(t)−1 − 1)p f

]ξ . (200)

The term on the right has no poles in the upper half-plane, so we can evaluate it using
Cauchy’s formula to find

P(x, t; ξ, t0) =
(
x − 1

ξ − 1

)
[w(t)]ξ [1 − w(t)]x−ξ (201)

which is nonzero only for x ≥ ξ , i.e. we have a shifted negative binomial distribution.
�

6 Discussion and conclusion

We rederived Jahnke andHuisinga’s classic result onmonomolecular reaction systems
(c.f. Theorem 2 and Eq. 31) using the Doi-Peliti coherent state path integral approach,
which reduces solving the CME to the computation of many integrals. In addition,
we also derived an explicit exact time-dependent solution to a problem involving an
autocatalytic reaction that was beyond the scope of Jahnke and Huisinga’s method
(c.f. Theorem 3 and Eq. 40), and a formal exact solution for systems involving arbi-
trary combinations of zero and first order reactions (c.f. Theorem 4 and Eq. 57; see
Appendix D and Appendix E for the proof). We hope that our calculations, as well as
our detailed description of the Doi-Peliti formalism, help make the Doi-Peliti method
more accessible to mathematical biologists studying the CME.

The strength of the Doi-Peliti approach—that calculations require nothing more
clever than evaluating many integrals—is probably also its primary weakness. In
Jahnke and Huisinga’s original paper (Jahnke and Huisinga 2007), they began with
proofs of partial results that offered intuition for why their main result is true: in
short, Poisson remains Poisson, and multinomial remains multinomial. In contrast,
our calculation does not seem to offer such insight en route to the full solution. This
may make it easier to generalize to other kinds of systems (as we did in Sect. 5 and
Appendix D), but it is a little unsatisfying.

Still, the Doi-Peliti approach was able to generate a solution in a nontrivial case
where Jahnke and Huisinga’s approach broke down, and we showed that it can offer
solutions in farmore general and nontrivial cases inAppendixD.While the calculation
is likely to be tedious, it seems possible that the Doi-Peliti approach could also be used
to find explicit generating functions and transition probabilities (i.e. involving the
explicit solution for q(t)) for suitable generalizations of (for example) the birth-death-
autocatalysis system, like one that involves many birth reactions, death reactions, and
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reactions of the form S j → Sk + S
. It is not clear what new insights are necessary to
solve explicitly for q(t) in cases like this.

Another obvious objection to the Doi-Peliti approach is that it is not entirely math-
ematically rigorous: in rederiving Jahnke and Huisinga’s result, we freely swapped
many improper integrals, frequently utilized the integral representation of the Dirac
delta function, and so on. But we did get answers, and the method is likely to yield
answers for problems that other methods cannot currently solve. If nothing else, the
Doi-Peliti approach can be used as a tool to generate answers, which can be justified
as rigorously correct using some other method (e.g. by showing that they solve the
CME directly).

How far can one push the Doi-Peliti approach to obtaining exact solutions? One
important class of systems whose CME solutions would be extremely useful to know
are bimolecular systems, whose reactions involve at most two input molecules and
two output molecules (e.g. binding reactions A+ B → C). Because binding reactions
are ubiquitous in biology, and because there is a sense in which all chemical reaction
systems (as notes in Gillespie (2000)) can be reduced to a list of at most bimolecular
reactions7, this solution or some suitably approximated version of it would include
nearly all systemsof practical interest.Aswenoted earlier in the introduction, solutions
are only known for this class of systems in extremely special cases (e.g. Laurenzi
(2000), Arslan and Laurenzi (2008)). Can the Doi-Peliti technique solve bimolecular
reaction networks, or some nontrivial subclass of them?

The answer is currently unclear. As we point out in Appendix E, the success of
the Doi-Peliti approach in solving zero and first order reaction networks is essentially
equivalent to the fact that these systems can be treated using the method of charac-
teristics. From the path integral point of view, this means that the evaluation of many
integrals can be reduced to solving some (possibly nonlinear) system of ODEs. This
idea, at least in its current form, appears to no longer work when reactions with two
input molecules are permitted.

To see why, consider the one species system whose reaction list consists only of
X + X

c−→ ∅; this is in some sense the simplest nontrivial example of a system in
which complications arise. The Hamiltonian kernel of this system is

H(i p, z, t) = − c

2
(i p) (i p + 2) z2 . (202)

This gives rise to terms like p2
 z
2

−1 inside the path integral, which yield Gaussian

integrals with respect to either the p
 or z
. Even in this simple case, it is unclear
how to evaluate all of these Gaussian integrals, or to convert the problem of evaluating
them into something simpler (e.g. solving anODEor recurrence relation of somekind).
Furthermore, the Hamiltonian kernel above actually yields integrals that appear not
to be well-defined (since integrals whose integrands go like exp

{
p2
 z

2

−1

}
diverge for

z
−1 ∈ (0,∞) and p
 ∈ (−∞,∞)), although this can in principle be circumvented

7 A related fact is that systems involving reactions with more than two input molecules can be well-
approximated by systems involving reactions with at most two input molecules; this is a recent result due
to Tomislav (2021).
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by choosing a different resolution of the identity (c.f. Appendix B.5) as the foundation
of the path integral for these problems.

More broadly, it is not clear to what extent the difficulties the Doi-Peliti approach
seems to have with higher-order reactions are particular to it, or shared by essentially
every approach for solving the CME. Although this is difficult to determine, we can
note for now that since the Doi-Peliti approach appears to be able to reproduce every
kind of exact result currently known (or at least currently known to the author; this
includes time-dependent, stationary, single species, multi-species, etc. results), the
challenges it faces in generalizing to more complicated systems are probably shared
by other known methods.

While we did not resort to approximations in this paper, it is worth noting that
utilizing Doi-Peliti path integrals enables the use of powerful perturbative and asymp-
totic expansions. For most systems of interest in mathematical biology (e.g. gene
networks with many species and interactions), this is the way in which the Doi-Peliti
approach can be practically applied. SeeWeber and Frey (2017), and Assaf andMeer-
son (2017), for recent reviews discussing approximation techniques related to path
integral descriptions of the CME.

The Doi-Peliti path integral is just one example of a stochastic path integral (Weber
and Frey 2017; Vastola and Holmes 2019). The Onsager-Machlup (Onsager and
Machlup 1953; Machlup and Onsager 1953; Graham 1977; Hertz et al. 2016) and
Martin-Siggia-Rose-Janssen-De Dominicis (Martin et al. 1973; Janssen 1976; DE
Dominicis 1976; De Dominicis and Peliti 1978; Hertz et al. 2016) path integrals are
two other examples, which offer an alternative to the Fokker-Planck equation in the
same way the Doi-Peliti path integral is an alternative to the CME. While exact com-
putations of these path integrals are also tedious, they are just as mechanical—one
can ‘turn the crank’ and generate answer, without relying on (for example) a priori
knowledge of special functions to solve differential equations (Vastola 2019a, b).

Acknowledgements This work was supported by NSF Grant # DMS 1562078.

A Quantum vs standard notation

In this paper, we make abundant use of Dirac’s bra-ket notation for vectors and inner
products. While this notation is standard in quantum mechanics, it is less often used
in areas with a more strictly mathematical bent. In this appendix, we briefly explain
our justification for this nonstandard choice, and review its relationship with notation
more commonly used in linear algebra and stochastic processes, so that this paper can
be more easily read by mathematicians unfamiliar with quantummechanical notation.

A.1 Brief justification for quantum notation

Although it is not normally used in the study of stochastic processes, it is the author’s
strong belief that the bra-ket notation originally developed for quantum mechanics is
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most appropriate here. Because this notation makes it harder for most mathematicians
to read this paper, here we briefly argue why this is necessary.

Given that the problems we are attempting to solve are quite complicated, carefully
choosing notation is important; a bad choice of notation would clutter our already
complicated arguments, making them nearly impossible to understand. We would
like notation that (i) generalizes cleanly to complicated systems in arbitrarily many
dimensions; (ii) simplifies the construction of the Doi-Peliti path integral; and (iii) is
suggestive of the operations we want to take, and not suggestive of operations that are
not valid.

Let us say more about each heuristic requirement:

1. Generalizes: We are studying systems for which there are n distinct chemical
species, where n ≥ 1 is some positive integer. We have seen that this forces
us to work in a Hilbert space where each basis vector can be identified with an
element of N

n . We need notation for each basis vector, as well as for sums over
N
n , integrals over R

n , and eigenvectors with eigenvalues z ∈ C
n . Denoting basis

vectors, eigenvectors, and things like sums and integrals cleanly in arbitrarilymany
dimensions is easy using bra-ket notation.

2. Simplifies: Constructing the Doi-Peliti path integral involves using many identity
operators/resolutions of the identity (see Appendix B.5). This is cleanest with
bra-ket notation, and using alternative notation obfuscates these steps.

3. Suggestive/not confusing: We have to compute many inner products, as well
as different kinds of inner products. Bra-ket notation allows them to be denoted
simply, e.g. the inner product of |x〉 and |y〉 is 〈x |y〉. If we used generating function
notation, where we have gx instead of |x〉 and gy instead of |y〉, we would have to
define strange operations like gx ·gy = x !δ(x−y).Moreover, this notation suggests
operations like gx gy = gx+y are valid, although they are not. Vector notation
(using e.g. ex and ey to denote basis vectors) would be somewhat confusing,
because we are already considering vectors like x ∈ N

n to denote particular states
of our system.

Aside from issues of notation, there is a ‘deeper’ reason this path integral requires
special notation, whereas for others (see e.g. Bressloff (2014)) standard notation and a
Chapman-Kolmogorov-based argument suffices.Most of the time, when path integrals
are applied to stochastic processes or mathematical biology, what one is really doing is
applying the Chapman-Kolmogorov equation many times. This has the interpretation
that one is imagining all possible paths fromone state to another state and appropriately
discretizing them.

This kind of path integral is qualitatively different. It involves expanding an abstract
object (rather than the transition probability itself) in terms of coherent states (which
we will define later), which are themselves kind of abstract Poisson-like distributions.
There does not seem to be the same obvious interpretation linking this path integral to
the Chapman-Kolmogorov equation, or to all possible paths through state space (the
space of all possible configurations of the system, i.e. Nn for a system with n distinct
chemical species). For a state space path integral representation of the CMEwith such
an interpretation, see Vastola and Holmes (2020).
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A.2 Mathematical details of notation correspondence

For now, we will work in one dimension for simplicity. Consider a complex vector
space V with a countable basis e0, e1, e2, ..., so that an arbitrary state in this space
reads

φ =
∞∑

x=0

c(x)ex (203)

for some complex coefficients c(x). In terms of bra-ket notation, we would denote the
basis vectors (also called ‘kets’ or ‘states’) by |0〉 , |1〉 , |2〉, ... and an arbitrary state
by

|φ〉 =
∞∑

x=0

c(x) |x〉 , (204)

which essentially amounts to the identifications ex → |x〉 and φ → |φ〉.
Define the inner product 〈ex , ey〉 := δ(x − y) for all x, y ∈ N, and extend it to

arbitrary states by linearity. Using bra-ket notation, we would write

〈x |y〉 = δ(x − y) . (205)

At this point, there are not yet any significant differences between the two choices of
notation. The significant differences begin when we consider linear functionals like
the functional Ly : V → C defined by its action on a basis vector ex :

Ly(ex ) := 〈ey, ex 〉 . (206)

Using bra-ket notation, we would denote Ly by 〈y| (this is called a ‘bra’), and Ly

acting on ex by 〈y|x〉 (the inner product is sometimes called a ‘bra-ket’). This allows
us to represent Fourier-like identities like

φ =
∞∑

y=0

〈ey,φ〉ey (207)

via

|φ〉 =
∞∑

y=0

〈y|φ〉 |y〉 , (208)

or more succinctly by defining the operator

1 =
∞∑

y=0

|y〉 〈y| (209)
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which by definition is equal to the identity operator. Equations like these are often
called ‘resolutions of the identity’, because they recast the identity operator in some
convenient form. The notation above ismeant to be highly suggestive; one can imagine
it ‘bumping into’ a vector/state |φ〉 from the left to recover Eq. 208.

This notation also makes it easy to repeatedly apply resolutions of the identity, and
to see what the result will be. Compare

φ =
∑

y1,y2,y3

〈ey3 , ey2〉〈ey2 , ey1〉〈ey1 ,φ〉ey3 (210)

to
|φ〉 =

∑

y1,y2,y3

|y3〉 〈y3|y2〉 〈y2|y1〉 〈y1|φ〉 . (211)

The above can be obtained simply by inserting Eq. 209 next to |φ〉 many times.
One helpful feature of bra-ket notation is that eigenvectors are traditionally labeled

by their eigenvalues. For example, if Âφ = λφ, it is traditional to write φ as

φ → |λ〉 , (212)

so that Â |λ〉 = λ |λ〉. We used this throughout the paper to denote coherent states,
which we defined to be eigenstates of the annihilation operators.

Matrix elements—expressions of the form 〈φ2, Âφ1〉 for two vectors φ1 and φ2

and some operator Â—are denoted by

〈
φ2

∣∣∣Â
∣∣∣φ1

〉
. (213)

This notation is convenient when we are computing matrix elements involving oper-
ators and their eigenstates. For example, let â be an operator, â† be its Hermitian
conjugate, and φ1 → |λ1〉 and φ2 → |λ2〉 be eigenstates with eigenvalues λ1 and λ2,
respectively. Then on the one hand, we have

〈φ2, â
†â φ1〉 = 〈âφ2, âφ1〉 = λ∗

2λ1〈φ2,φ1〉 (214)

in standard notation. On the other hand, we have

〈
λ2

∣∣∣â†â
∣∣∣ λ1

〉
= λ∗

2λ1 〈λ2|λ1〉 (215)

using bra-ket notation, where we imagine â† ‘acting to the left’ and â ‘acting to the
right’.

That is about all there is to say about the correspondence between bra-ket notation
and typical vector space notation. One should keep in mind that the strength of bra-
ket notation is in repeatedly applying the identity operator/resolutions of the identity,
which is required to construct the Doi-Peliti path integral. The correspondence is
summarized (for arbitrary dimensions, using the notation introduced in Sect. 2) in
Table 1.
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Table 1 Let x ∈ R
n , and let the notation be as in Sect. 2.2 (e.g. x! := x1! · · · xn !). This table summarizes

the correspondence between quantum and standard notation for several objects discussed in this appendix,
as well as objects discussed elsewhere in this paper (e.g. coherent states)

Object Bra-ket notation Standard notation

basis vector/ket |x〉 ex
linear functional/bra 〈x| Lx : ey �→ 〈ex, ey〉
zero vector 0 0

arbitrary state |φ〉 =
∑

x
c(x) |x〉 φ =

∑

x
c(x) ex

inner product 〈x|y〉 〈ex, ey〉
operator matrix element 〈x |A| y〉 =

〈
x
∣∣∣A†

∣∣∣ y
〉

〈ex,A ey〉 = 〈A† ex, ey〉
generating function |ψ(t)〉 =

∑

x
P(x, t) |x〉 ψ(t) =

∑

x
P(x, t) ex

coherent state (c.s.) |z〉 =
∑

y

zy

y! e
−z·1 |y〉 cs(z) =

∑

y

zy

y! e
−z·1 ey

c.s. identity operator |x〉 =
∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

ex =
∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

|z〉 〈−ip|x〉 e−iz·p cs(z)〈cs(−ip), ex〉e−iz·p

A.3 Three ways to write the generating function

A few words should also be said about the relationship between various ways to write
the generating function. We remind the reader that it is defined (in one dimension
again, for simplicity) in terms of standard/Euclidean notation and bra-ket notation via

ψ =
∞∑

x=0

P(x, t) ex |ψ〉 =
∞∑

x=0

P(x, t) |x〉 (216)

where P(x, t) is a solution to the CME. These objects live in a Hilbert space, and so
we can add them, take inner products, and so on. But what we usually mean by the
label ‘generating function’ is the analytic function

ψ(g, t) =
∞∑

x=0

P(x, t) gx (217)

with g ∈ C, which is not a vector at all. Howdo these different notions of the generating
function relate, and why do we choose to primarily work with the former instead of
the latter?

It turns out that the Hilbert space objects and analytic function form are completely
equivalent, up to the identification gx → |x〉, and that working with one instead of
the other is mostly a matter of taste or convenience. As we note in Appendix E, the
analytic function form can be recovered from the vector form by taking the appropriate
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Grassberger-Scheunert inner product:

〈
g∗ − 1|ψ(t)

〉 =
∞∑

x=0

P(x, t)
〈
g∗ − 1|x 〉 =

∞∑

x=0

P(x, t)(1 + g − 1)x = ψ(g, t) .

(218)

More interestingly, the equations of motion they satisfy exactly correspond. For exam-
ple, in the case of the chemical birth-death process, we remind the reader that ψ(g, t)
satisfies the PDE

∂ψ(g, t)

∂t
= k(t)[g − 1]ψ(g, t) − γ (t)[g − 1]∂ψ(g, t)

∂g
(219)

whereas |ψ〉 satisfies the equation
∂ |ψ〉
∂t

= Ĥ |ψ〉 (220)

where in this case theHamiltonian operator Ĥ is given (in terms of our original creation
and annihilation operators) by

Ĥ = k(π̂ − 1) − γ (π̂ − 1)â . (221)

This is the same as the above PDE, provided one makes the identifications

π̂ → g

â → ∂

∂g
.

(222)

These identifications work more generally (for arbitrary numbers of dimensions, and
an arbitrary list of reactions). Although they are equivalent, one form of the generating
function is often more convenient to use than the other. In our case, we use the Hilbert
space form for almost the entirety of this paper, because it allows us to exploit bra-ket
notation to denote applying many resolutions of the identity (c.f. Appendix B.5), and
to work straightforwardly in terms of matrix elements of the Hamiltonian.

Finally, we should say that the coherent state resolution of the identity we used
many times to construct the Doi-Peliti path integral (c.f. Sect. B.5) can be written in
terms of ordinary functions as

gx =
∫ ∞

0
dz

∫ ∞

−∞
dp

2π
ez(g−1)(1 + i p)xe−i zp (223)

in one dimension, and

gx =
∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

ez·(g−1)(1 + ip)xe−iz·p (224)
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in arbitrarily many dimensions. However, attempting to construct the path integral
using this notation instead of bra-ket notation is significantly messier, so we have
avoided it.

B Constructing the Doi-Peliti path integral

In this appendix, we develop the technical machinery of Doi-Peliti theory in order to
prove Theorem 5.

B.1 Time evolution of the generating function

Pressing the analogy between Ĥ and matrices, we have the usual formal solution for
the generating function |ψ(t)〉 in terms of the (time-ordered) exponential of Ĥ .

Proposition 1 (Formal solution for the generating function) The equation of motion
for the generating function |ψ(t)〉 (Eq. 103) has the formal solution

|ψ(t)〉 = T̂ e
∫ t
t0
Ĥ(t ′)dt ′ |ψ(t0)〉

=
∞∑

j=0

1

j !
∫ t

t0
· · ·

∫ t

t0
T̂

[
Ĥ(t1) · · · Ĥ(tn)

]
dt1 · · · dtn

= 1 +
∫ t

t0
Ĥ(t1)dt1 + 1

2

∫ t

t0

∫ t

t0
T̂

[
Ĥ(t1)Ĥ(t2)

]
dt1dt2 + · · ·

(225)

where T̂ is the time-ordering symbol, whose action on a product of operators is defined
to be

T̂
[
Â1(t)Â2(t

′)
]

:=
{
Â1(t)Â2(t ′) t ≥ t ′
Â2(t ′)Â1(t) t < t ′

. (226)

To show this, substitute this expression for the generating functiondirectly intoEq. 103.
Thepresence of the time-ordering symbolmakes thismore subtle than itwould be in the
case of a time-independent Hamiltonian (i.e. in the case where the reaction parameters
were all time-independent), but this is essentially a standard exercise (Schwartz 2014).

One should be careful, both in this proposition and throughout the remainder of this
paper, to note that the exponential of Ĥ is not even well-defined if Ĥ is an unbounded
operator. Although we will not attempt to take care of issues like this, one possible
approach to making this line of argument more rigorous would be to use a truncated
state space, as one does in numerical approaches like finite state projection (Munsky
andKhammash 2006; Pele et al. 2006; Fox et al. 2016; Fox andMunsky 2019)—in that
case, because |ψ(t)〉 would be a finite-dimensional vector and Ĥ would be equivalent
to a (finite-dimensional) matrix, no problems would arise.
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Corollary 6 For time-independent Ĥ , the above formal solution reduces to

|ψ(t)〉 = eĤ(t−t0) |ψ(t0)〉 . (227)

Proof One can either show that this solves the equation of motion directly, or simplify
the result above. �

Fortunately, we will never have to work with a time-ordered exponential of operators
directly. The first salient consequence of the formal solution for us is that

|ψ(t + Δt)〉 ≈
[
1 + Ĥ(t)Δt

]
|ψ(t)〉 (228)

for sufficiently smallΔt , with the approximation becoming exact in theΔt → 0 limit.
Notice that this also matches what we would find by naively approximating the time
derivative with a finite difference in Eq. 103.

This formal solution motivates defining the time evolution operator, which carries
the solution at time t1 (the state |ψ(t1)〉) to the solution at time t2 (the state |ψ(t2)〉).

Definition 2 The time evolution operator Û (t2, t1) is defined as

Û (t2, t1) := T̂ e
∫ t2
t1

Ĥ(t ′)dt ′

=1 +
∫ t2

t1
Ĥ(s1)ds1 + 1

2

∫ t2

t1

∫ t2

t1
T̂

[
Ĥ(s1)Ĥ(s2)

]
ds1ds2 + · · ·

(229)

for any two times t1 ≤ t2. In terms of the time evolution operator, the formal solution
for |ψ(t)〉 can be written

|ψ(t)〉 = Û (t, t0) |ψ(t0)〉 . (230)

The second salient consequnce of Proposition 1 is that this operator has an important
composition property.

Proposition 2 (Composition property of the time evolution operator) The time evolu-
tion operator Û has the property that

Û (t2, t1) = Û (t2, t
′)Û (t ′, t1) (231)

for any time t ′ with t1 ≤ t ′ ≤ t2.

Proof This is most easily seen using the infinite series form of the time evolution
operator Û , by expanding both sides and showing that they match at each order. �

123



48 Page 56 of 82 J. J. Vastola

B.2 Basic operators

Because we are interested in the dynamics of the generating function |ψ(t)〉, we need
to introduce operators to act on it. In particular, we need to introduce operators that
will allow us to write down the Hamiltonian operator Ĥ .

For an arbitrary CME (Eq. 99), the Hamiltonian operator Ĥ can be written in terms
of certain linear operators. In particular, define the operators x̂k (for all k = 1, ..., n)
and r̂ j (t) (for all j = 1, ..., M), which act on an arbitrary basis ket |x〉 according to

x̂k |x〉 = xk |x〉
r̂ j (t) |x〉 = a j (x, t)

∣∣x + ν j
〉

.
(232)

In terms of them, the Hamiltonian operator Ĥ can be written

Ĥ =
M∑

j=1

r̂ j (t) − a j (x̂, t) (233)

where a j (x̂, t) |x〉 = a j (x, t) |x〉. But perhaps more usefully, all of the Hamiltonian
operatorswe consider in this paper canalsobewritten in terms of so-called annihilation
operators âk and creation operators π̂k .

Definition 3 Define the annihilation and creation operators â j and π̂ j for all j =
1, ..., n as the operators whose action on a basis vector |x〉 is

â j |x〉 = x j
∣∣x − ε j

〉

π̂ j |x〉 = ∣∣x + ε j
〉 (234)

where we remind the reader that ε j is the n-dimensional vector with a 1 in the j th
place and zeros everywhere else.

It is easy to show that these operators satisfy the commutation relations analogous to
those seen in quantum mechanics [(for example, in the ladder operator treatment of
the harmonic oscillator, Griffiths and Schroeter 2018, or in the canonical quantization
approach to quantum field theory, Schwartz 2014]. These properties will be used in
calculations a few times throughout this paper.

Proposition 3 Recall that, for two operators Â1 and Â2, their commutator is defined
to be [Â1, Â2] := Â1Â2 − Â2Â1. The creation and annihilation operators satisfy the
commutation relations

[â j , π̂k] = δ( j − k) , [â j , âk] = [π̂ j , π̂k] = 0 . (235)

Proof Use their definitions to straightforwardly show this. �
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In essence, theDoi-Peliti approach to solving Eq. 103 involves usingmany coherent
state ‘resolutions of the identity’ (a phrase we will define shortly) to rewrite Eq. 225
as a coherent state path integral. Once that path integral is evaluated, quantities like
moments and P(x, t) can be recovered by manipulating the path integral solution in
specific ways. In order to follow this prescription, we will need to define coherent
states, define inner products, and construct associated resolutions of the identity; that
is our next task.

B.3 Coherent states

Because we will be expressing the Hamiltonian operator in terms of creation and anni-
hilation operators, it is convenient to work in terms of states that behave simply when
acted upon by these operators. These are the so-called coherent states, which are often
used to study the semiclassical limit of quantum mechanics. Here, we will only care
about them for their algebraic properties; while their biological meaning is not com-
pletely obscure (they are essentially states that correspond to Poisson distributions),
thinking about it is not necessary in what follows.

Definition 4 Let z = (z1, ..., zn)T ∈ C
n . A coherent state is a state

|z〉 :=
∑

y

c(y) |y〉 (236)

satisfying

â j |z〉 = z j |z〉 for all j = 1, ..., n
∑

y

c(y) = 1 (237)

i.e. it is an eigenstate of all annihilation operators â j , and it has a specific normalization.

By imposing the eigenstate constraint on an arbitrary state, it is straightforward to
determine the coefficients c(y) explicitly. Coherent states can also be written in terms
of a specific combination of creation operators acting on the ‘vacuum’ state |0〉. We
make these statements more precise in the following proposition.

Proposition 4 The coherent state |z〉 can explicitly be written in the following two
equivalent forms:

(i)

|z〉 =
∑

y

zy11 · · · zynn
y1! · · · yn ! e

−(z1+···+zn) |y〉 =
∑

y

zy

y! e
−z·1 |y〉 (238)

(ii)

|z〉 =
∑

y

[z1(π̂1 − 1)]y1 · · · [zn(π̂n − 1)]yn
y1! · · · yn ! |0〉 = ez·(π̂−1) |0〉 (239)
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where π̂ := (π̂1, ..., π̂n)
T .

Proof Showing (i) is straightforward. To show (ii), first note that [â j , (π̂ j − 1)y] =
y(π̂ j −1)y−1 for all y ∈ N, a useful commutator result that can be proved by induction.
Using this, along with the facts that â j commutes with π̂k for k 	= j and the π̂k all
commute with each other, we have

â j |z〉 = ez·(π̂−1)−z j (π̂ j−1)
∞∑

y j=0

z
y j
j

y j ! â j (π̂ j − 1)y j |0〉

= ez·(π̂−1)−z j (π̂ j−1)
∞∑

y j=0

z
y j
j

y j !
{
(π̂ j − 1)y j â j + y j (π̂ j − 1)y j−1

}
|0〉

= z j e
z·(π̂−1)−z j (π̂ j−1)

∞∑

y j=1

z
y j−1
j (π̂ j − 1)y j−1

(y j − 1)! |0〉

= z j |z〉 .

(240)

Hence, this expression satisfies the eigenstate constraint. Noting that eigenstates are
unique up to a proportionality constant, to show that it satisfies the normalization
constraint (and hence is the same as the expression given by (i)), observe that

ez·(π̂−1) |0〉 =
∑

y

zy11 · · · zynn
[
(−1)y1+···+yn + · · · ]
y1! · · · yn ! |0〉

= e−z·1 |0〉 + · · ·
(241)

i.e. the coefficient of |0〉 is e−z·1, because every other term in the above expansion
contains a creation operator. Because this is the same as the coefficient of |0〉 in (i),
we have equivalence. �
In what follows, we will generally reserve the letters z and p for coherent states.

B.4 Inner products

Now we will define two inner products on our space, each of which individually
turns it into a Hilbert space: the exclusive product, and the Grassberger-Scheunert
product. Both were introduced by Grassberger and Scheunert in a 1980 paper that
clearly describes their motivation and properties (Grassberger and Scheunert 1980);
we are calling their “inclusive” inner product the Grassberger-Scheunert product to
recognize their contribution.

Briefly, the exclusiveproduct is useful for computing P(x, t),while theGrassberger-
Scheunert product is useful for simplifying path integral calculations (specifically, we
avoid having to perform a “Doi shift” (Cardy et al. 2008; Weber and Frey 2017); see
Eq. 3.4 of Peliti (1985) for an example of the Doi shift) and computing moments. We
will use both inner products in solving the CME.
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In this section and the following sections, the reader should keep in mind that〈
x
∣∣∣Â(t)

∣∣∣ y
〉
, where Â(t) is some possibly time-dependent operator, means the same

as 〈ex, Â(t)ey〉 in more standard notation. See Appendix A for more details.

Definition 5 Let |x〉 and |y〉 be basis vectors. Their exclusive product is defined to be
〈x|y〉ex := x! δ(x − y) . (242)

Extending this by linearity, define the exclusive product of two arbitrary states |φ1〉
and |φ2〉 as (c.f. Eq. 100)

〈φ2|φ1〉ex =
∑

x

x! c∗
2(x)c1(x) . (243)

Definition 6 Let |x〉 and |y〉 be basis vectors, and define â := (â1, ..., ân)T . Their
Grassberger-Scheunert product is defined to be

〈x|y〉 :=
〈
x
∣∣∣eπ̂ ·1eâ·1

∣∣∣ y
〉

ex
=

∑

k

x! y!
(x − k)! (y − k)! k! (244)

where the sum on the right is over all values of k ∈ N
n with k j ≤ min(x j , y j ) for all

j = 1, ..., n. Extending this by linearity, define the Grassberger-Scheunert product of
two arbitrary states |φ1〉 and |φ2〉 as

〈φ2|φ1〉 =
〈
φ2

∣∣∣eπ̂ ·1eâ·1
∣∣∣φ1

〉

ex
. (245)

While it is not obvious just from looking at them, it is straightforward to show
that the operator-based and sum-based definitions are equivalent (see Grassberger and
Scheunert (1980) and the appendix to Peliti (1985)).

The primary reason these inner products are useful to define is that the creation and
annihilation operators behave well under Hermitian conjugation with respect to them.

Proposition 5 (Hermitian conjugates of creation and annihilation operators) Let |x〉
and |y〉 be basis vectors.With respect to the exclusive product, â j and π̂ j areHermitian
conjugates of each other for all j = 1, ..., n, i.e.

(
â j

)† = π̂ j〈
x
∣∣â j

∣∣ y
〉
ex = 〈

y
∣∣π̂ j

∣∣ x
〉
ex .

(246)

With respect to the Grassberger-Scheunert product, the Hermitian conjugate of â j is

(
â j

)† = π̂ j − 1 (247)

for all j = 1, ..., n, i.e.

〈
x
∣∣â j

∣∣ y
〉 = 〈

y
∣∣π̂ j − 1

∣∣ x
〉

. (248)
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Proof Showing that π̂ j and â j are Hermitian conjugates with respect to the exclusive

product is straightforward given their definitions, so we will show that
(
â j

)† = π̂ j −1
with respect to the Grassberger-Scheunert product.

Recall the result mentioned in the proof of Proposition 4 that [â j , (π̂ j − 1)y] =
y(π̂ j − 1)y−1 for all y ∈ N. Using just the same argument, one can show [â j , π̂

y
j ] =

y(π̂ j )
y−1 for all y ∈ N. This, in turn, can be used to prove that

eπ̂ j â j = (â j − 1)eπ̂ j . (249)

Let |x〉 and |y〉 be arbitrary basis vectors. Now we can say that

〈
x
∣∣â j

∣∣ y
〉 =

〈
x
∣∣∣eπ̂ ·1eâ·1â j

∣∣∣ y
〉

ex

=
〈
x
∣∣∣eπ̂ j â j e

π̂ ·1−π̂ j eâ·1
∣∣∣ y

〉

ex

=
〈
x
∣∣∣(â j − 1)eπ̂ j eπ̂ ·1−π̂ j eâ·1

∣∣∣ y
〉

ex

=
〈
x + ε j

∣∣∣eπ̂ ·1eâ·1
∣∣∣ y

〉

ex
−

〈
x
∣∣∣eπ̂ ·1eâ·1

∣∣∣ y
〉

ex

= 〈
x + ε j |y

〉 − 〈x|y〉

(250)

where we have used the fact that π̂ j and â j are Hermitian conjugates with respect to
the exclusive product in the next to last step. But this is the same as

〈
y
∣∣π̂ j − 1

∣∣ x
〉 = 〈

y|x + ε j
〉 − 〈y|x〉 (251)

because the Grassberger-Scheunert product of two basis vectors is symmetric. Hence,
â j and π̂ j − 1 are Hermitian conjugates with respect to the Grassberger-Scheunert
product. �
Now let us compute some inner products that we will use later.

Proposition 6 (Useful inner products) Let |x〉 be a basis vector, and let |z〉 and |p〉 be
coherent states. Then

(i)

〈x|z〉ex = zxe−z·1 (252)

(ii)

〈x|z〉 = (1 + z)x (253)

(iii)

〈p|z〉ex = ep
∗·z−(p∗+z)·1 (254)
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(iv)

〈p|z〉 = ep
∗·z . (255)

Moreover, we remind the reader that other results (e.g. 〈z|x〉 = (1 + z∗)x) can be
obtained from the above ones by taking a complex conjugate.

Proof First, the exclusive product of a basis state |x〉 with a coherent state |z〉 is

〈x|z〉ex =
∑

y

zy

y! e
−z·1 〈x|y〉ex =

∑

y

zy

y! e
−z·1 x! δxy = zxe−z·1 . (256)

Next, the Grassberger-Scheunert product of a basis state |x〉 with a coherent state |z〉
is

〈x|z〉 =
〈
x
∣∣∣eπ̂ ·1eâ·1

∣∣∣ z
〉

ex

=ez·1
〈
x
∣∣∣eπ̂ ·1

∣∣∣ z
〉

ex

=e(z+1)·1 〈
x
∣∣∣e(z+1)·(π̂−1)

∣∣∣ 0
〉

ex

=e(z+1)·1 〈x|z + 1〉ex
= (1 + z)x

(257)

where we have used that |z〉 is an eigenstate of the annihilation operators â j , the
operator representation of |z〉 from Proposition 4, and Eq. 256. The exclusive product
of two coherent states is

〈p|z〉ex =
∑

y

(p∗)y

y! e−p∗·1 〈y|z〉ex =
∑

y

(p∗)y zy

y! e−(p∗+z)·1 = ep
∗·z−(p∗+z)·1.

(258)

Finally, the Grassberger-Scheunert product of two coherent states is

〈p|z〉 =
〈
p

∣∣∣eπ̂ ·1eâ·1
∣∣∣ z

〉

ex
= e(p

∗+z)·1 〈p|z〉ex = ep
∗·z (259)

where we have used Eq. 258. �

B.5 Resolution of the identity

The phrase ‘resolution of the identity’ refers to a useful way to write the identity opera-
tor. In our case, we would like to write the identity operator in terms of coherent states,
which will allow us to construct the Doi-Peliti path integral. The relevant proposition,
using coherent states and the Grassberger-Scheunert product, is the following.
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Proposition 7 (Identity operator in terms of coherent states) Let |x〉 be a basis vector,
and |z〉 and |−ip〉 be coherent states. Then

|x〉 =
∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

|z〉 〈−ip|x〉 e−iz·p (260)

i.e.

1 =
∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

|z〉 〈−ip| e−iz·p (261)

is the identity operator (because the relationship holds for basis vectors, it holds for
all states by linearity).

Proof To establish Eq. 261, first observe that

∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

|z〉 〈−ip|x〉 e−iz·p

=
∫

(0,∞)n
dz

∫

Rn

dp
(2π)n

|z〉 (1 + ip)x e−iz·p

=
∑

y

1

y! |y〉
∫

(0,∞)n
dz zy

∫

Rn

dp
(2π)n

(1 + ip)x e−z·(1+ip)

=
∑

y

1

y! |y〉
∫

(0,∞)n
dz zy

(
− d

dz

)x ∫

Rn

dp
(2π)n

e−z·(1+ip)

(262)

for all basis kets |x〉, where we remind the reader of the shorthand

(
d

dz

)x

:=
(

d

dz1

)x1
· · ·

(
d

dzn

)xn
(263)

used to ease notation. Integrate the last line of Eq. 262 by parts to obtain

∑

y

1

y! |y〉
∫

(0,∞)n
dz

(
d

dz

)x [
zy

]
e−zδ(z)

=
∑

y

1

y! |y〉 x! δ(y − x)

= |x〉

(264)

which confirms that Eq. 261 is a resolution of the identity. �
Because Eq. 261 is essentially due to the usual integral representation of the Dirac

delta ‘function’, one should be careful to note that the above identity is not totally
rigorous (without more carefully appealing to the machinery of distributions). Still, it
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is hard to do without it in what follows; as we are about to see, it enables the entire
path integral approach.

We can use the coherent state resolution of the identity (Eq. 261)we just constructed
to rewrite our formal solution for |ψ(t)〉 (Eq. 225). Applying it twice, we have the
following result.

Corollary 7 (Generating function in terms of coherent states) The generating function
can be written in the form

|ψ(t)〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

∣∣∣z f
〉 〈

−ip f
∣∣∣Û (t, t0)

∣∣∣ z0
〉 〈−ip0|ψ(t0)

〉
e−ip0·z0−ip f ·z f

.

(265)

Proof Apply Proposition 7 to the formal solution for |ψ(t)〉 (c.f. Eq. 230) twice. �
The object that appears in the middle of this expression is sufficiently important

that it deserves its own name.

Definition 7 The propagator is defined as the matrix element

U (ip f , t; z0, t0) :=
〈
−ip f

∣∣∣Û (t, t0)
∣∣∣ z0

〉
. (266)

where
∣∣−ip f

〉
and

∣∣z0
〉
are coherent states, and Û (t, t0) is the time evolution operator.

Usually, we will refer to it using the abbreviated notation U (ip f , z0).

Nowwewill construct a coherent state path integral expression for the propagator—
this is one of the most important equations in this paper, as it forms the basis of
Doi-Peliti path integral calculations.

Proposition 8 (Path integral expression for thepropagator) ThepropagatorU (ip f , t; z0,
t0) is equal to the path integral

U = lim
N→∞

∫ N−1∏


=1

dz
dp


(2π)n
exp

{
N−1∑


=1

−ip
 · (z
 − z
−1) + Δt H(ip
, z
−1, t
−1)

+Δt H(ip f , zN−1, tN−1) + ip f · zN−1
}

(267)

where Δt := (t − t0)/N and the Hamiltonian kernel H is defined as

H(ip, z, t) :=
〈
−ip

∣∣∣Ĥ(t)
∣∣∣ z

〉
e−ip·z (268)

where |−ip〉 and |z〉 are coherent states with p, z ∈ R
n.

Proof First write the time evolution operator U (t, t0) as a product of many time evo-
lution operators using the composition property (Eq. 231):

Û (t, t0) = Û (t, tN−1)Û (tN−1, tN−2) · · · Û (t1, t0) (269)

123



48 Page 64 of 82 J. J. Vastola

where t
 := t0 + 
Δt for 
 = 0, ..., N , and Δt := (t − t0)/N . Now insert (N − 1)
resolutions of the identity to write

U =
∫ N−1∏


=1

dz
dp


(2π)n

〈
−ip f

∣∣∣Û (t, tN−1)

∣∣∣ z
−1
〉
· · ·

〈
−ip1

∣∣∣Û (t1, t0)
∣∣∣ z0

〉
e−i

∑N−1

=1 p
·z
 .

(270)

To arrive at our desired path integral, all we must do is compute the matrix elements
in the above equation. Assuming that N is large enough thatΔt is very small, we have
that

Û (t
, t
−1) ≈ 1 + Ĥ(t
−1)Δt (271)

i.e. Û is equal to its first order Taylor expansion. Moreover, this inequality becomes
exact in the N → ∞ limit. Using this,

〈
−ip


∣∣∣Û (t
, t
−1)

∣∣∣ z
−1
〉
≈ eip


·z
−1 + Δt
〈
−ip


∣∣∣Ĥ(t
−1)

∣∣∣ z
−1
〉

. (272)

By the definition of the Hamiltonian kernel,

〈
−ip


∣∣∣Û (t
, t
−1)

∣∣∣ z
−1
〉
≈ eip


·z
−1
[
1 + H(ip
, z
−1, t
−1)Δt

]

≈ eip

·z
−1+ΔtH(ip
,z
−1,t
−1)

(273)

where we have again used the fact thatΔt is small. Putting all of these matrix elements
together, our final coherent state path integral expression for U (ip f , z0) reads

U = lim
N→∞

∫ N−1∏


=1

dz
dp


(2π)n
exp

{
N−1∑


=1

−ip
 · (z
 − z
−1) + Δt H(ip
, z
−1, t
−1)

+Δt H(ip f , zN−1, tN−1) + ip f · zN−1

} (274)

where the N → ∞ limit must be taken so that the approximation we made in Eq. 271
becomes exact. �

Note that we have (i) free interchanged the N → ∞ limit with many integrals over
R
n and (0,∞)n ; (ii) repeatedly used Eq. 261, which is based on a formal integral

representation of the Dirac delta function; and (iii) based this expansion on Û without
even checking that the exponential of the Hamiltonian operator is well-defined. This is
just to caution the reader that the Doi-Peliti approach requires extensive mathematical
legwork to be made completely rigorous (as with all path integral approaches). For
our present purpose, it is sufficient to use it to obtain answers that can be rigorously
checked.

123



Solving the chemical master equation for... Page 65 of 82 48

B.6 Grassberger-Scheunert creation operators

As we noted in Appendix B.4, the Hermitian conjugate of the annihilation operator
â j with respect to the Grassberger-Scheunert product is π̂ j − 1 for all j = 1, ..., n.
Motivated by this, we define the Grassberger-Scheunert creation operators.

Definition 8 The Grassberger-Scheunert creation operators are defined to be

â+
j := π̂ j − 1 (275)

for all j = 1, ..., n.

In the rest of the appendices, we will take ‘creation operator’ without qualification
to mean one of these operators.

All Hamiltonians we consider may be expressed in terms of creation operators and
annihilation operators. For example, the Hamiltonian operator corresponding to the
chemical birth-death process (c.f. Sect. 2.1 and Eq. 2) can be shown to read

Ĥ = k(t)â+ − γ (t)â+â (276)

which is a specific case of a result we derive later (see Appendix C). Note that this
expression is ‘normal ordered’—all creation operators are to the left of all annihilation
operators. For all (possibly time-dependent) operators Â(t) in this form, i.e.

Â(t) :=
∑

κ1,...,κn ,ρ1,...,ρn

dκ1,...,κn
ρ1,...,ρn

(t) (â+
1 )κ1 · · · (â+

n )κn (â1)
ρ1 · · · (ân)ρn , (277)

coherent state matrix elements are easily evaluated by exploiting that (â j )
† = â+

j and
that the coherent states are eigenstates of the annihilation operators. The particular
result is the following.

Proposition 9 (Coherent state matrix elements of normal ordered operators) Let |z〉
and |p〉 be coherent states, and Â(t) be an arbitrary (possibly time-dependent) opera-
tor that is normal ordered (i.e. all creation operators are to the left of all annihilation

operators). The coherent state matrix element
〈
p

∣∣∣Â(t)
∣∣∣ z

〉
can be evaluated to be

〈
p

∣∣∣Â(t)
∣∣∣ z

〉
= ep

∗·z ∑

κ1,...,κn ,ρ1,...,ρn

dκ1,...,κn
ρ1,...,ρn

(t) (p∗
1)

κ1 · · · (p∗
n)

κn (z1)
ρ1 · · · (zn)ρn .(278)

Proof Use the linearity of the inner product to take the sum out, then use the facts that
(â j )

† = â+
j , âk |z〉 = zk |z〉, and 〈p| â+

k = p∗
k 〈p|. Finally, note that 〈p|z〉 = ep

∗·z. �

We will use this result in Appendix C to derive many Hamiltonian kernels.
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B.7 Probability distribution andmoments

We need some way to extract information (like the transition probability P(x, t)
or factorial moments) from the generating function |ψ(t)〉. It turns out that we can
achieve this using the exclusive product (Peliti 1985) andGrassberger-Scheunert prod-
uct (Grassberger and Scheunert 1980).

Proposition 10 (Extracting transition probabilities and moments from the generating
function) Transition probabilities can be obtained from the generating function using
the exclusive product, and factorial moments can be obtained from the generating
function using the Grassberger-Scheunert product and the annihilation operators. In
particular,

P(x, t) = 〈x|ψ(t)〉ex
x! (279)

and
〈
x j (t)

〉 = 〈
0
∣∣â j

∣∣ψ(t)
〉

〈
x j (t)xk(t)

〉 = 〈
0
∣∣â j âk

∣∣ψ(t)
〉

〈
x j (t)[x j (t) − 1]〉 =

〈
0
∣∣∣â2j

∣∣∣ψ(t)
〉

〈
x j (t)[x j (t) − 1][x j (t) − 2]〉 =

〈
0
∣∣∣â3j

∣∣∣ψ(t)
〉

.

(280)

Proof By the definition of the exclusive product,

〈x|ψ(t)〉ex
x! =

∑

y

P(y, t)
〈x|y〉ex

x! =
∑

y

P(y, t)δ(x − y) = P(x, t) . (281)

By the explicit definition of the Grassberger-Scheunert product of two basis vectors
(c.f. Eq. 244), note that 〈0|x〉 = 1 for all x ∈ N

n . Then

〈
0
∣∣â j

∣∣ψ(t)
〉 = 〈0|

∑

x

P(x, t)â j |x〉

= 〈0|
∑

x

P(x, t)x j
∣∣x − ε j

〉

=
∑

x

P(x, t)x j
〈
0|x − ε j

〉

=
∑

x

x j P(x, t)

= 〈x j (t)〉 .

(282)

The other expectation value formulas can be demonstrated in a similar fashion. �
With this done, we have all of the machinery necessary to prove Theorem 5, which
allows us to solve all of the problems identified in Sect. 2.
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B.8 Proof of main Doi-Peliti result

Proof (Theorem5) Since P(x, t0) = δ(x−ξ) for some ξ ∈ N
n , we have that |ψ(t0)〉 =

|ξ 〉. By Proposition 6, if
∣∣−ip0

〉
is a coherent state with p0 ∈ R

n , then

〈
−ip0

∣∣∣ψ(t0)
〉
=

〈
−ip0

∣∣∣ξ
〉
=

〈
ξ

∣∣∣ − ip0
〉∗ =

(
1 + ip0

)ξ
. (283)

Applying Corollary 7, we have that

|ψ(t)〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

∣∣∣z f
〉 〈

−ip f
∣∣∣Û (t, t0)

∣∣∣ z0
〉 〈−ip0|ψ(t0)

〉
e−ip0·z0−ip f ·z f

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

∣∣∣z f
〉
U (ip f , t; z0, t0)

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

,

(284)

establishing Eq. 104.
We proved the path integral expression for the propagator (Eq. 106) in Proposition

8. Our expression for the Hamiltonian kernel (Eq. 107) can be derived using a formula
for Ĥ that we identified earlier (Eq. 233). Note,

H(ip, z, t) =
〈
−ip

∣∣∣Ĥ(t)
∣∣∣ z

〉
e−ip·z

= e−ip·z
M∑

j=1

〈−ip
∣∣r̂ j (t) − a j (x̂, t)

∣∣ z
〉

.
(285)

Using the explicit formula for |z〉 from Proposition 4, we have that

H = e−ip·z
M∑

j=1

∑

y

zy

y! e
−z·1 〈−ip

∣∣r̂ j (t) − a j (x̂, t)
∣∣ y

〉

= e−ip·z
M∑

j=1

∑

y

zy

y! e
−z·1 {

a j (y, t)
〈−ip|y + ν j

〉 − a j (y, t) 〈−ip|y〉} .

(286)

Using Proposition 6 to evaluate the Grassberger-Scheunert products, we have

H = e−ip·z
M∑

j=1

∑

y

zy

y! e
−z·1a j (y, t)

{
(1 + ip)y+ν j − (1 + ip)y

}

= e−ip·z
M∑

j=1

[
(1 + ip)ν j − 1

]∑

y

zy (1 + ip)y

y! e−z·1a j (y, t)

=
M∑

j=1

[
(1 + ip)ν j − 1

]∑

y

zy (1 + ip)y

y! e−z·(1+ip) a j (y, t)

(287)
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which is precisely Eq. 107. By Eq. 279 from Proposition 10,

P = 〈x|ψ(t)〉ex
x!

= 1

x!
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

〈
x|z f

〉

ex
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

.

(288)

By Proposition 6, this equals

P = 1

x!
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

(
z f

)x
e−z f ·1 U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

, (289)

establishing Eq. 108. By Eq. 280 from Proposition 10, we have

〈xk(t)〉 = 〈
0
∣∣âk

∣∣ψ(t)
〉

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

〈
0
∣∣âk

∣∣ z f
〉
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
k

〈
0|z f

〉
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

.

(290)

By Proposition 6, this equals

〈xk(t)〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
k U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

, (291)

establishing Eq. 109. Similarly,

〈
x j (t)xk(t)

〉 = 〈
0
∣∣â j âk

∣∣ψ(t)
〉

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

〈
0
∣∣â j âk

∣∣ z f
〉
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
j z

f
k

〈
0|z f

〉
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
z f
j z

f
k U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

(292)

and

〈
x j (t)[x j (t) − 1]〉 =

〈
0
∣∣∣â2j

∣∣∣ψ(t)
〉

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

〈
0
∣∣∣â2j

∣∣∣ z f
〉
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f
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=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

[
z f
j

]2 〈
0|z f

〉
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

=
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

[
z f
j

]2
U

(
1 + ip0

)ξ
e−ip0·z0−ip f ·z f

, (293)

establishing Eq. 110. Expressions for higher order (factorial) moments can be derived
by an identical argument. �

C Hamiltonian kernels

In this appendix,we derive theHamiltonian kernels for the variousmodelswe consider.
In principle, there are a few ways to do this. One way is to directly evaluate Eq. 107
for a given model. Another is to first write down the Hamiltonian operator Ĥ in terms
of annihilation operators and Grassberger-Scheunert creation operators (in normal
ordered form), and then apply Proposition 9. In the spirit of Doi-Peliti theory, we use
the latter approach here.

C.1 Monomolecular

Lemma 9 The Hamiltonian operator corresponding to the monomolecular CME (Eq.
18) is

Ĥ =
n∑

k=1

c0k(t)
[
π̂k − 1

] −
n∑

k=1

ck0(t)
[
π̂k − 1

]
âk

+
n∑

j=1

n∑

k=1

c jk(t)
[
π̂k − π̂ j

]
â j .

(294)

Proof First, take the time derivative of |ψ(t)〉:

∂ |ψ〉
∂t

=
∑

x

∂P(x, t)
∂t

|x〉

=
∑

x

{
n∑

k=1

c0k(t) [P(x − εk, t) − P(x, t)]

+
n∑

k=1

ck0(t) [(xk + 1)P(x + εk, t) − xk P(x, t)]

+
n∑

j=1

n∑

k=1

c jk(t)
[
(x j + 1)P(x + ε j − εk, t) − x j P(x, t)

]
⎫
⎬

⎭ |x〉

(295)
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where we have used Eq. 18. Reindex the sums over x so that this expression reads

∂ |ψ〉
∂t

=
∑

x

{
n∑

k=1

c0k(t) [ |x + εk〉 − |x〉 ]

+
n∑

k=1

ck0(t) [ xk |x − εk〉 − xk |x〉 ]

+
n∑

j=1

n∑

k=1

c jk(t)
[
x j

∣∣x − ε j + εk
〉 − x j |x〉

]
⎫
⎬

⎭ P(x, t) . (296)

Using the creation and annihilation operators we defined earlier, the right-hand side
can be written as

∑

x

{
n∑

k=1

c0k(t)
[
π̂k − 1

] +
n∑

k=1

ck0(t)
[
âk − π̂k âk

]

+
n∑

j=1

n∑

k=1

c jk(t)
[
â j π̂k − π̂ j â j

]
⎫
⎬

⎭ P(x, t) |x〉

=
{

n∑

k=1

c0k(t)
[
π̂k − 1

] +
n∑

k=1

ck0(t)
[
âk − π̂k âk

]

+
n∑

j=1

n∑

k=1

c jk(t)
[
â j π̂k − π̂ j â j

]
⎫
⎬

⎭ |ψ(t)〉 .

(297)

Comparing this with the definition of the Hamiltonian operator (c.f. Eq. 103), we have
our result. �
TheHamiltonian can bewrittenmore compactly in terms of theGrassberger-Scheunert
creation operators:

Corollary 8 In terms of the Grassberger-Scheunert creation operator, the Hamiltonian
is

Ĥ =
n∑

k=1

c0k(t)â
+
k −

n∑

k=1

ck0(t)â
+
k âk +

n∑

j=1

n∑

k=1

c jk(t)
[
â+
k − â+

j

]
â j . (298)

Proof Start with the result above and make the identification â+
j = π̂ j − 1. �

Note that this expression is ‘normal ordered’—all creation operators are to the left of all
annihilation operators. This allows us to use Proposition 9 to compute the Hamiltonian
kernel.
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Corollary 9 The Hamiltonian kernel for the monomolecular CME is

−iH(ip
, z
−1, t
−1) =
n∑

k=1

c0k(t
−1)p


k −

n∑

k=1

ck0(t
−1)p


k z


−1
k

+
n∑

j=1

n∑

k=1

c jk(t
−1)
[
p

k − p


j

]
z
−1
j .

(299)

Proof Make the identifications â+
j → i p


j and â j → z
−1
j in the Hamiltonian above.

�

C.2 Birth-death-autocatalysis

Lemma 10 The Hamiltonian operator corresponding to the birth-death-autocatalysis
CME (Eq. 36) is

Ĥ = â+ [
k + (c − γ )â + c â+â

]
. (300)

Proof Starting with Eq. 36, follow the argument from Lemma 9, and then substitute
in the Grassberger-Scheunert creation operator. �

Corollary 10 The Hamiltonian kernel for the birth-death-autocatalysis CME is

H(i p, z, t) = i p
[
k + (c − γ )z

] − c p2z . (301)

Proof Make the identifications â+ → i p and â → z in the Hamiltonian above. �

C.3 Zero and first order reactions

Writing down the CME directly for this very general system is difficult; however,
we do know that the Hamiltonian operator of a CME involving only zero and first
order reactions only contains terms proportional to products of Grassberger-Scheunert
creation operators.Wealso know that eachof its terms involves atmost one annihilation
operator. Without loss of generality, we can assume the corresponding Hamiltonian
operator can be written (c.f. Eq. 54)

Ĥ(t) =
∑

κ1,...,κn

ακ1,...,κn (t)
(
â+
1

)κ1 · · · (â+
n

)κn

+
n∑

k=1

∑

κ1,...,κn

βk
κ1,...,κn

(t)
(
â+
1

)κ1 · · · (â+
n

)κn âk

(302)
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for some coefficients ακ1,...,κn (t) and β
j
κ1,...,κn (t) that are determined by the details of

one’s list of reactions. The corresponding Hamiltonian kernel is

H(ip, z, t) =
〈
−ip

∣∣∣Ĥ(t)
∣∣∣ z

〉
e−ip·z

=
∑

κ1,...,κn

ακ1,...,κn (t) (i p1)
κ1 · · · (i pn)κn

+
n∑

k=1

∑

κ1,...,κn

βk
κ1,...,κn

(t) (i p1)
κ1 · · · (i pn)κn zk .

(303)

D Zero and first order calculations

In this section, we sketch the calculations necessary for proving the formulas from
Theorem 4 on a system with arbitrary combinations of zero and first order reactions.
We sketch how the path integral expression for the propagator U may be evaluated.
We also use the explicit form of the propagator to derive the transition probability and
generating function.

Lemma 11 (Zero and first order reactions propagator) The propagator for the system
with arbitrary combinations of zero and first order reactions is

U = exp

{
i z0 · q(t) +

∫ t

t0

∑

κ1,...,κn

ακ1,...,κn (t − s + t0) [iq1(s)]
κ1 · · · [iqn(s)]κn ds

}

(304)

where q(s) is as defined in Theorem 4.

Proof We will only sketch this proof, because the argument is exactly the same as the
one presented in Lemma 6—the notation is just more cluttered, because we are now
dealing with a multi-species system and an arbitrarily large list of reactions. One may
notice, from a careful look at that prior argument, that its success did not depend on
the detailed features of the birth-death-autocatalysis system at all; it only depended
on the Hamiltonian containing terms at most first order in annihilation operators (i.e.
no terms like â j âk or (â j )

6 appear). Since this is also true in the current case, we can
rerun that argument to find that the propagator can be written in terms of the solution
q(t) to

dq j (s)

ds
= −i

∑

κ1,...,κn

β j
κ1,...,κn

(t − s + t0) [iq1(s)]
κ1 · · · [iqn(s)]κn (305)

satisfying the initial condition q j (t0) = p f
j . As before, the final propagator has two

terms. There is one term that comes from p0 = q(t) coupling to z0, and another term
(due to the terms in the Hamiltonian involving no annihilation operators) that becomes
a convolution integral. �
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Next, we will derive the transition probability.

Lemma 12 (Zero and first order reactions transition probability) The transition prob-
ability for the system with arbitrary combinations of zero and first order reactions
is

P =
∫

Rn

dp f

(2π)n

[
1 + iq(t)

]ξ
e
∫ t
t0

∑
ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

(1 + ip f )x+1 (306)

where q(s) is as in Theorem 4.

Proof Begin by using Eq. 108 to write

P = 1

x!
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

(
z f

)x
e−z f ·1 U (1 + ip0)ξ e−ip0·z0−ip f ·z f

= 1

x!
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

(
z f

)x
e−z f ·1 eiz0·q(t)(1 + ip0)ξ

× e−ip0·z0−ip f ·z f
e
∫ t
t0

∑
κ1,...,κn ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

.

(307)

The integral over z0 is

∫
dz0 e−iz0·(p0−q(t)) = 1

in(p0 − q(t))1
, (308)

the integral over p0 is

∫
dp0

(2π i)n
(1 + ip0)ξ

(p0 − q(t))1
= (1 + iq(t))ξ , (309)

and the integral over z f is

∫
dz f

(
z f

)x

x! e−z f ·(1+ip f ) = 1

(1 + ip f )x+1 , (310)

leaving only the desired integral. �
Finally, we will derive the generating function.

Lemma 13 (Zero and first order reactions generating function) The generating func-
tion for the system with arbitrary combinations of zero and first order reactions is

ψ(g, t) = [
1 + iq(t)

]ξ ×
× e

∫ t
t0

∑
ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

∣∣∣∣
p f =−i(g−1)

(311)

where q(s) is as in Theorem 4.
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Proof Begin with Eq. 104, the Doi-Peliti solution for the generating function. For
proving this result, it is convenient to switch over to analytic notation, in which

|ψ(t)〉 → ψ(g, t)

|x〉 → gx

|z〉 → ez·(g−1) .

(312)

In particular, we have

ψ =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
ez

f ·(g−1)eiz
0·q(t)(1 + ip0)ξ

× e−ip0·z0−ip f ·z f
e
∫ t
t0

∑
κ1,...,κn ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

.

(313)

The integral over z0 is

∫
dz0 e−iz0·(p0−q(t)) = 1

in(p0 − q(t))1
, (314)

the integral over p0 is

∫
dp0

(2π i)n
(1 + ip0)ξ

(p0 − q(t))1
= (1 + iq(t))ξ , (315)

and the integral over z f is

∫
dz f e−z f ·[−(g−1)+ip f

]
= 1

[−(g − 1) + ip f
]1 , (316)

leaving only the integral

∫
dp f

(2π i)n

[
1 + iq(t)

]ξ
e
∫ t
t0

∑
κ1,...,κn ακ1,...,κn (t−s+t0)[iq1(s)]κ1 ···[iqn(s)]κn ds

[
p f + i(g − 1)

]1 . (317)

This integral is a simple contour integral (the numerator is the exponential of a function
analytic in p f ), whose evaluation via Cauchy’s integral formula corresponds to the
desired result. �

E Another view of the propagator

The mess of formalism aside, a coarse view of what we have been doing is that we
have been calculating the propagator U , which we remind the reader is defined via

U (ip f , t; z0, t0) :=
〈
−ip f

∣∣∣Û (t, t0)
∣∣∣ z0

〉
(318)
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where
∣∣z0

〉
and

∣∣−ip f
〉
are coherent states. We computed U by evaluating many inte-

grals, and then used the formula (c.f. Corollary 7)

|ψ(t)〉 =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n

∣∣∣z f
〉
U

〈
−ip0|ψ(t0)

〉
e−ip0·z0−ip f ·z f

(319)

to recover the generating function |ψ(t)〉. This expression for |ψ(t)〉 is then suitably
manipulated to directly recover other objects of interest, like moments or transition
probabilities.

Given the relatively simple-looking results we have derived for U (c.f. Lemmas 1,
6, and 11), one may wonder whether there is another way to derive it—in particular,
does U satisfy some PDE?

In the following, it will be more convenient to switch to a more standard notation
for the probability generating function:

|ψ(t)〉 =
∑

x

P(x, t) |x〉 → ψ(g, t) :=
∑

x

P(x, t) gx , (320)

which really just amounts to the replacement |x〉 → gx. This is related to our notation
by taking theGrassberger-Scheunert product of the generating functionwith a coherent
state |g∗ − 1〉 for some g ∈ C

n :

〈
g∗ − 1|ψ(t)

〉 =
∑

x

P(x, t)
〈
g∗ − 1|x〉 =

∑

x

P(x, t)(1 + (g − 1))x = ψ(g, t) .

(321)

In this notation, the relationship between the generating function and the propagator
reads

ψ(g, t) =
∫

dz f dp f

(2π)n

dz0dp0

(2π)n
ez

f ·(g−1) U
〈
−ip0|ψ(t0)

〉
e−ip0·z0−ip f ·z f

. (322)

Recall that the generating function ψ(g, t) satisfies a partial differential equation. For
simplicity, suppose we are dealing with the chemical birth-death process, for which
the relevant PDE reads

∂ψ

∂t
= k(t)[g − 1]ψ − γ (t)[g − 1]∂ψ

∂g
. (323)

Substituting this into (the one-dimensional version of) Eq. 322, the right-hand side
reads

∫
dz f dp f

2π

dz0dp0
2π

U
{
k[g − 1] − γ [g − 1]z f

}
ez f (g−1)e−i p f z f 〈−i p0|ψ(t0)〉 e−i p0z0 .

(324)
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But note that

(g − 1)ez f (g−1) = ∂

∂z f
ez f (g−1)

z f e
−i p f z f = i

∂

∂ p f
e−i p f z f .

(325)

Using these identities, integrating by parts, and freely removing boundary terms, the
right-hand side now reads

∫
dz f dp f

2π

dz0dp0
2π

{
i p f

[
kU + iγ

∂U

∂ p f

]}
ez f (g−1)e−i p f z f 〈−i p0|ψ(t0)〉 e−i p0z0 .

(326)

This suggests that the expression given by Eq. 322 will solve the equation of motion
for |ψ(t)〉 (Eq. 103) if

∂U (i p f , z0)

∂t
= i p f

[
kU (i p f , z0) + iγ

∂U (i p f , z0)

∂ p f

]
. (327)

It is easy to verify that our expression for the propagator of the chemical birth-death
process (c.f. Lemma 1) does solve this PDE.

We can generalize this enough for our purposes, although it should be clear that
this correspondence holds for any CME (and not just ones involving only zero and
first order reactions).

Proposition 11 (Propagator PDE) If the generating functionψ(g, t) satisfies the PDE
given by Eq. 54, then the propagator U (ip f , t; z0, t0) satisfies a PDE

∂U

∂t
=

∑

κ1,...,κn

ακ1,...,κn (t)
[
i p f

1

]κ1 · · ·
[
i p f

n

]κn
U

− i
n∑

k=1

∑

κ1,...,κn

βk
κ1,...,κn

(t)
[
i p f

1

]κ1 · · ·
[
i p f

n

]κn ∂U

∂ p f
k

(328)

with initial condition U (ip f , t0; z0, t0) = exp(iz0 · p f ) for arbitrary p f , z0 ∈ R
n.

Proof Integrate by parts as in the one-dimensional example. The initial condition
comes from the definition of U :

U (ip f , t0; z0, t0) =
〈
−ip f

∣∣∣Û (t0, t0)
∣∣∣ z0

〉
=

〈
−ip f |z0

〉
= eiz

0·p f
. (329)

�
At this point, we should note that the PDE satisfied by the propagator (Eq. 328) and
the PDE satisfied by the generating function (Eq. 54) are equivalent up to a change
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of variables (i.e. g − 1 → ip f ). Does this mean that the propagator, along with the
entire Doi-Peliti artifice we have constructed, is extraneous?

While this is a reasonable question to ask, the answer is probably no. It is easy
to see that our expressions for the propagator and our expressions for the generating
function have tended to look somewhat different, with the latter almost always being
more complicated. Themain reason for this difference seems to be that the propagator’s
initial condition is much simpler than the initial condition for the generating function
PDE, which usually permits finding explicit solutions of the propagator PDE.

Now that we have this result, how can we connect it with the propagator solution
we found in Lemma 11 (for arbitrary combinations of zero and first order reactions,
which includes all other propagators considered in this paper as special cases)? It turns
out that there is a straightforward way to do this using the method of characteristics,
a standard approach for solving first order PDEs like the one above.

Themethod involves supposing that the relevant independent variables (in this case,
p f and t) lie along some parameterized curve. For a pedagogical example applying
this method to solve a toy problem in chemical kinetics (the chemical birth-death
process with additive noise), see (Vastola 2019a).

Lemma 14 (Method of characteristics solution) The propagator for the system with
arbitrary combinations of zero and first order reactions matches the one given by
Lemma 11.

Proof Suppose (where we use slightly different notation here, because only the initial
condition of the PDEdepends on z0 and t0) thatp f and t lie along curves parameterized
by some parameter s, so that

∂

∂s

[
U (p f (s), t(s)

]
=∂U

∂t

∂t

∂s
+

n∑

k=1

∂U

∂ p f
k

∂ p f
k

∂s

= − ∂U

∂t
− i

n∑

k=1

∑

κ1,...,κn

βk
κ1,...,κn

(t)
[
i p f

1

]κ1 · · ·
[
i p f

n

]κn ∂U

∂ p f
k

.

(330)

Choose the curve so that

∂t

∂s
= −1

∂ p f
k

∂s
= −i

∑

κ1,...,κn

βk
κ1,...,κn

(t(s))
[
i p f

1 (s)
]κ1 · · ·

[
i p f

n (s)
]κn

.

(331)

Suppose that we are interested in U (ip f , t f ; z0, t0) for some particular final time t f .
Solving the equation for t(s), we have

t(s) = t f − s + t0 (332)

123



48 Page 78 of 82 J. J. Vastola

where the arbitrary constant was chosen so that s ∈ [t0, t f ] with t(t0) = t f and
t(t f ) = t0. Then the equation determining p f (s) reads

∂ p f
k

∂s
= −i

∑

κ1,...,κn

βk
κ1,...,κn

(t f − s + t0)
[
i p f

1 (s)
]κ1 · · ·

[
i p f

n (s)
]κn

. (333)

Notice that this is exactly the same as the equation satisfied by q(s) (see Theorem
4). Moreover, our p f (s) and q(s) satisfy the same initial condition: p f (s = t0) =
p f (t(s) = t f ) = p f , since the symbol p f means the value corresponding to the
evaluation of U (ip f , t f ; z0, t0) at the final time t f . This point is somewhat subtle, so
convince yourself of it before going forward.

Hence, we can make the identification p f (s) → q(s). This means our PDE for U
now reads

∂U

∂s
=

∑

κ1,...,κn

ακ1,...,κn (t) [iq1]
κ1 · · · [iqn]κn U . (334)

Solving this as usual, we have the solution

U (s) = C exp

{∫ s

t0

∑

κ1,...,κn

ακ1,...,κn (t − s + t0) [iq1(s)]
κ1 · · · [iqn(s)]κn ds

}
(335)

for some constant C that depends on the initial condition. Implement the initial condi-
tion for s = t0 (i.e. t(s) = t f ), noting that p f (s = t0) = q(s = t f ). Finally, evaluate
U (s) at s = t f to obtain

U (t f ) = exp

{
iz0 · q(t f ) +

∫ t f

t0

∑

κ1,...,κn

ακ1,...,κn (t − s + t0) [iq1(s)]
κ1 · · · [iqn(s)]κn ds

}

(336)

which is the desired answer. �
After all this, it is natural to ask whether the path integral calculations were necessary
if the answer for the propagator can be determined by solving a relatively simple PDE.
The author can only note that he was able to come up with this alternative approach
only after carefully studying the path integral answer. It is likely that there are other
cases where one can ‘turn the crank’ to determine the path integral answer, and then
justify that answer using some more conventional method after one realizes why it
takes its precise form.
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