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SUMMARY
Recent experimental developments in genome-wide RNA quantification hold considerable promise for sys-
tems biology. However, rigorously probing the biology of living cells requires a unified mathematical frame-
work that accounts for single-molecule biological stochasticity in the context of technical variation associ-
ated with genomics assays. We review models for a variety of RNA transcription processes, as well as the
encapsulation and library construction steps ofmicrofluidics-based single-cell RNA sequencing, and present
a framework to integrate these phenomena by themanipulation of generating functions. Finally, we use simu-
lated scenarios and biological data to illustrate the implications and applications of the approach.
INTRODUCTION

In his classic systems biology textbook,1 D.J. Wilkinson notes

that ‘‘Improvements in experimental technology are enabling

quantitative real-time imaging of expression at the single-cell

level, and improvement in computing technology is allowing

modeling and stochastic simulation of such systems at levels

of detail previously impossible. The message that keeps being

repeated is that the kinetics of biological processes at the intra-

cellular level are stochastic and that cellular function cannot be

properly understood without building that stochasticity into in sil-

ico models.’’ From this perspective, systems biology studies

control over randomness and the ways in which living cells

exploit variability to grow and function. Counterintuitively, this

stochastic weltanschauung relies on mental models that are

inherently deterministic: differentiation landscapes,2–6 gene

expression manifolds,7 cellular state graphs,8,9 gene regulatory

networks,10,11 and kinetic parameters.12 Analysis of experi-

mental data therefore requires reconciling underlying determin-

istic structure with biological stochasticity and experimental

technical variability, or noise. In particular, distinguishing tech-

nical noise from biological stochasticity involves the statistical

modeling of experimental readouts, expected noise sources,

and the signal-to-noise ratio, and requires consideration of the

theoretical and computational tractability of the model.

How can we model these features—latent deterministic struc-

ture, biological stochasticity, and technical noise—in a way that

balances our models’ ability to adequately describe available

data with our own ability to adequately understand the mathe-

matical behavior and biological interpretation of our models?

Answering this question is particularly challenging in the context
of single-cell genomics, where datasets are large and sparse, the

signal-to-noise ratio is low, and stochasticity is one of the

defining features of the underlying biophysics.13–15 Here, we

explain why many naive approaches to understanding the sto-

chastic systems biology of single cells fall short and describe a

theoretical framework that can serve as an alternative. Our

framework extends recent work on the mechanistic modeling

of single-cell RNA count distributions16–21 and addresses both

howmodels can be efficiently fit to single-cell data and what fea-

tures of the underlying biology we can hope to learn.

After introducing the general framework, we illustrate its con-

sequences through a series of vignettes. In each case, we

consider modeling particular aspects of biological and technical

noise and ask the following questions: (1) what do our models

help us learn about the underlying biology and (2) what could

go wrong if we ignored these features of our data? We find

that certain kinds of noise must be carefully modeled, others

are poorly identifiable, whereas others still cannot be identified

at all and can be safely ignored.

Systems biology and single-cell genomics
Standard approaches to systems biology

If an experiment has ample controls and provides a readout with

a high signal-to-noise ratio in the relevant variables, coarse-

grained, moment-based models can be ideal. For example, in-

vestigations of cell growth have effectively used least-squares

regression to fit scaling relationships between cell volume and

molecular abundance that hold on average.22,23 Analogously,

experiments leveraging the integration of multiple fluorescent re-

porters have successfully decomposed molecular noise sources

into intrinsic and extrinsic components,24 leading to numerous
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analytical25–28 and experimental29–31 extensions that leverage

the lower moments of poorly characterized biological drivers to

describe or delimit the system variability. These approaches,

which have found application to new experimental techniques,

have origins in the Onsager and Langevin theories of the early

twentieth century,32 which specify the moment behaviors of

near-equilibrium statistical thermodynamic systems using

Gaussian terms.

Alongside studying biology on a gene-by-gene basis, consid-

erable effort has been dedicated to the discovery of regulatory

networks. This problem is considerably more challenging: the

number of candidate network modules rapidly grows with the

number and size of motifs of interest, and simple moment-based

models risk distorting key qualitative features, such as multi-

stability. From the perspective of statistics, network inference re-

quires specifying or bypassing likelihood functions for joint gene

expression, which may combine various noise sources in addi-

tion to the ‘‘signal’’ of regulation. Typical ways of addressing

this challenge include33,34:
(1) The purely descriptive approach, which interprets an

expression correlation matrix as a graph but does not provide

an easily interpretable way to extract its signal.

(2) Thresholding, which bins the unknown observed distribu-

tion to obtain a known, but lower-information distribution, as

with binarization used to construct Boolean networks35 or

implement the phixer algorithm.36

(3) Distributional assertion, which fits static observations

by assuming statistics or observations are Gaussian, as in

a variety of popular Bayesian,34 information-theoretic,37

and regression-based38 methods; this assumption may39 or

may not40 provide accurate results.

(4) The dynamic approach, which fits a time-dependent tra-

jectory to data using assuming Gaussian residuals; this

assumption may reflect stochastic differential equation

(SDE) dynamics41 or isotropic observation noise added to a

latent process.42–44

This overview is far from exhaustive, but it demonstrates a key

theme: relatively robust signals, such as the lower moments or

the absence/presence of gene expression, can be treated using

fairly simple models that rely on highly optimized, well-under-

stoodmethods and algorithms developed in the context of signal

processing and dynamical systems analysis. Which simple

model may perform best is not known a priori and heavily de-

pends on the task.33 Ideally, methods are benchmarked on simu-

lated39,45 or well-characterized ‘‘gold standard’’33,46 datasets to

glean partial insights about their performance and limitations. In

this framework, improving the signal-to-noise ratio requires

either designing more precise readouts or sacrificing a portion

of the obtained data.

The challenge of single-cell data

Advances in sequencing technologies, most dramatically the

rapid commercialization and adoption of single-cell RNA

sequencing (scRNA-seq), which can profile millions of cells

on a genome-wide scale,47,48 have been heralded as a prom-

ising frontier for systems biology.49–51 This potential is more

striking, yet due to simultaneous advances in multiomics or

the measurement of multiple modalities (transient and non-cod-
2 Cell Systems 14, 1–22, October 18, 2023
ing RNA species, DNA methylation, chromatin accessibility,

and surface protein abundance) in individual cells,52,53 facili-

tating ‘‘integrated’’ analysis.54–56 The ‘‘big data’’ from single-

cell sequencing have thus served as a substrate for a plethora

of investigations that are, at the first glance, analogous to the

research program of systems biology at large: the identification

of cell types, their aggregation into trajectories, the discovery of

gene modules that consistently differ between cell types or

throughout a differentiation trajectory, and the visualization of

low-dimensional summaries reflecting some component of

the data structure.

To identify these coarse-grained motifs in the structure of sin-

gle-cell datasets, it is common practice to analyze cell-

cell graphs, constructed from measures of expression similarity,

to attempt to construct cliques (cell types), shortest paths

(trajectories), and neighborhood-preserving low-dimensional

embeddings (visualizations). In addition, relatively simple para-

metric distributions are widely used, with the Gaussian assump-

tion popular for the lower moments (e.g., to compute measures

of differential expression) and the lognormal or negative

binomial used to describe count distributions.57,58 Standard

scRNA-seq data provide snapshots of processes, rendering

dynamical analysis fairly complex, but it is common to fit a

‘‘pseudotemporal’’ curve through the dataset by minimizing a

Gaussian error term between this curve and some transforma-

tion of the cells’ expression levels.59,60

Here, however, the underlying assumptions break down.

Single-cell data are intrinsically and qualitatively different from

readouts of typical systems biology experiments, with drastic

implications for analysis. Single-cell data are large and sparse,

with a preponderance of technical noise effects, poorly charac-

terized batch- and gene-level biases and low per-cell copy

numbers.13–15 Improving the signal-to-noise ratio by designing

more targeted experiments is challenging, as commercial tech-

nology is designed to quantify molecules on a genome-wide

scale. More problematically, typical distributional assumptions

and data transformations risk losing a considerable amount of

signal in the low-copy number regime. This challenge informs

part of the broader discussion of the relative roles of data anal-

ysis and mechanistic hypotheses in genomics,19,20,61 as ana-

lyses that are not constrained by mechanism or theory may

contradict existing knowledge.

More specific critiques have considered whether various ana-

lyses are appropriate or excessively heavy handed. For example,

sparsity has led to ad hoc procedures to ‘‘correct’’ the data,

which may in turn lead to incorrect conclusions.62–64 Normaliza-

tion and log-transformation, which attempt to remove technical

biases and prepare the data for dimensionality reduction, rely

on assumptions, such as high copy numbers and homogeneity,

that are routinely violated in single-cell datasets.65,66 Dimension-

ality reduction risks distorting both local and global relationships

between data points.19,67,68 Finally, the use of cell-cell graphs

constructed from noisy data reifies relationships that may not

reflect those in the original tissue and risks introducing hard-

to-diagnose errors into downstream analysis.19,69 Although

these issues span the entire process of analysis, all, at least

partially, trace back to uncomfortable compromises in the treat-

ment of uncertainty and variation in a regime unforgiving of

approximations.
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Stochastic modeling of intracellular network dynamics

Stochasticity is, then, mandatory, and we ignore it at our own

risk. Therefore, we advocate for probabilistic alternatives to the

‘‘extraction’’ of signals from scRNA-seq datasets. Since biology

is stochastic, the noise is the signal. To quantify and characterize

the components of deterministic mental models—differentiation

landscapes, kinetic parameters, and similar low-dimensional ab-

stractions70—in a principled way, we need to combine themwith

stochastic terms that result from specific hypotheses about the

underlying biophysics and chemistry20 or risk confirmation

bias.19

The development of stochastic models offers advantages

beyond loss function bookkeeping. If multiomic data are avail-

able, there is typically a self-consistent way to extend themodels

accordingly.71 Although likelihoods induced by stochastic pro-

cesses are challenging to analyze and implement, they provide

appealing statistical properties. When the data are sufficiently

informative, full distributions provide better estimates than mo-

ments.40When they are not, probabilistic approaches are appro-

priately conservative, as they report, rather than elide, the

parameter degeneracies. A thorough mathematical understand-

ing of model behaviors—i.e., precisely which parameters are

identifiable and which are degenerate, as well as how much

data must be collected—enables the design of informative ex-

periments.20,72 Finally, the use of mechanistic models, parame-

trized by rate constants, allows us to draw conclusions about the

mechanistic bases and effects of perturbations.73

These principles have guided fluorescence-based single-cell

transcriptomics for nearly 20 years. To obtain as much informa-

tion as possible from entire copy-number distributions,40,74 the

field has developed a considerable arsenal of theoretical

tools75,76 and solution strategies.77–79 It is, then, particularly nat-

ural to build scRNA-seq models that extend processes consis-

tent with fluorescence imaging: this approach allows us to

leverage existing theory, as well as encode the intuition

that technology-dependent effects should be independent of

biological ones. A particularly popular class of models involves

the bursty production of RNA and its Markovian degrada-

tion,73,80 which can be analyzed in the chemical master equation

(CME) framework.81,82 The key theoretical points have already

been applied in the context of single-cell sequencing; for

example, the Poisson, Poisson-gamma, and Poisson-beta distri-

butions, which are common in sequencing analyses,58,63,83,84

are three of the limiting distributions induced by this class of

models.20,80,85 However, this possible mechanistic basis is

only rarely84,86–88 invoked in the development of analysis

methods.

Outlook

Unfortunately, we cannot simply apply the existing methods

from fluorescence transcriptomics; the scale and chemistry of

single-cell technologies create additional desiderata. General

CME solutions are computationally prohibitive and challenging

to scale to thousands of genes,89 requiring careful study of

narrow model classes with tractable solutions.17,20 In addition,

connecting biological models to observations requires explicitly

representing the experimental process. The existing models

for fluorescence data are sophisticated79 but cannot be

directly applied to sequencing data. Although a variety of

models have been proposed for technical noise in single-cell
technologies,13,14,90,91 their chemical foundations, as well as im-

plications for biological parameter identifiability, have been

understudied.21

In light of this lacuna, we seek to produce a mathematical

framework that (1) integrates biological and technical variability

in a coherent, modular way; (2) scales to large, multimodal

data; (3) can be used to simulate datasets and make testable,

quantitative predictions; and (4) affords a thoroughmathematical

analysis of its components, if not the entire model.

Stochastic modeling of single-cell biology
Constructing a general-purpose framework for the stochastic

modeling of single-cell biology necessitates working at a rela-

tively high level of abstraction, since we would in principle like

to account for a range of processes with one formalism. In this

section, we motivate our abstract formalism using a collection

of concrete, biologically relevant examples.

One of the simplest models of transcription is the constitutive

model, which assumes that RNA is produced at a constant

rate.20,92 It is defined by the chemical reactions

B/
K X ;X/

g
B; (Equation 6)

where X is a single species of RNA, K is the (constant) transcrip-

tion rate, and g is the degradation rate. The CME that corre-

sponds to this system is

vPðx; tÞ
vt

= K½Pðx � 1; tÞ � Pðx; tÞ�
+g½ðx + 1ÞPðx + 1; tÞ � xPðx; tÞ�;

(Equation 7)

where Pðx; tÞ is the probability that the system has x˛N0 RNA at

time t. Solving the above master equation allows us to compare

its predictions with experimental scRNA-seq data. There are

several theoretical approaches for doing this—including using

a special ansatz,85 the Poisson representation,93 the Doi-Peliti

path integral,17,94–96 and operator techniques97—but we would

like to highlight a straightforward method that we know works

for far more general problems. The idea is to consider a certain

transformed version of the probability distribution, which sat-

isfies a PDE instead of a differential-difference equation. This

PDE, for a large class of biologically relevant systems, can

then be solved using themethod of characteristics,98 which con-

verts the problem of solving a PDE into integrating a system of

ordinary differential equations (ODEs). This is mathematically

equivalent to using certain path integral methods.17,20,99

Define the generating functions (GFs; see Box 1)

Gðg; tÞ : =
XN
x = 0

gx Pðx; tÞ and fðu; tÞ : = log Gðg; tÞ;

(Equation 8)

where g is on the complex unit circle and u : = g � 1. It is easy

to show that G and f satisfy the PDEs

vG

vt
= ðg � 1Þ

�
KG � g

vG

vg

�
;

vf

vt
= Ku � gu

vf

vu
:

(Equation 9)
Cell Systems 14, 1–22, October 18, 2023 3



Box 1. Generating function methods for studying stochastic biological systems

Generating functions are ubiquitous tools in stochastic modeling. They are central to the analysis of discrete master equations, as

they cast difficult-to-solve infinite-dimensional systems to a finite number of coupled partial differential equations (PDEs), which

can be treated using standard analytical or numerical methods. A (one-variable) probability distribution PðxÞ and its generating

function GðgÞ are related according to the formulas.

GðgÞ =
XN
x = 0

gxPðxÞ;PðxÞ = # dg

2pi

1

gx+1
GðgÞ =

Zp
�p

dq

2p
e� iqxG

�
eiq
�
: (Equation 1)

In the stochastic modeling of transcription, certain distributions, such as the Poisson and negative binomial, frequently appear.

BecauseG uniquely specifies P, we can often invertG simply by recognizing its form and matching terms. Below are some gener-

ating functions of common distributions (Bernoulli, Poisson, geometric, and negative binomial):

PðxÞ = ð1 � pÞd0x +pd1x; GðgÞ = g; (Equation 2)

PðxÞ =
lxe� l

x!
; GðgÞ = elðg� 1Þ; (Equation 3)

PðxÞ =
q

1+q

�
1

1+q

�x

; GðgÞ =
1

1 � qðg � 1Þ ; (Equation 4)

PðxÞ =
Gðn+xÞ
x!GðnÞ

�
q

1+q

�n�
1

1+q

�x

; GðgÞ =

�
1

1 � qðg � 1Þ

�n

: (Equation 5)

The generating function expressions can often be made more compact by applying the substitution u : = g � 1.
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We can use the method of characteristics to find that

fðu; tÞ = f0ðUðtÞÞ+K

Z t

0

UðsÞ ds;

dU

ds
= � gU;

(Equation 10)

where theUðsÞODEhas initial conditionUðs = 0Þ = u, and f0 is

the initial (log-) GF of the system. In order to determine Pðx; tÞ
from fðu; tÞ = log Gðg; tÞ, we can use an inverse Fourier

transform:

Pðx; tÞ = # dg

2pi

1

gx+1
Gðg; tÞ =

Z p

�p

dq

2p
e� iqxG

�
eiq; t

�
where we integrate over all g on the complex unit circle. In prac-

tice, this step is done numerically using an inverse fast Fourier

transform.

The constitutive model, which produces Poisson distributions

at steady state, is too simple for single-cell biology.20 However,

fortunately, the technique we have just described can be adapt-

ed to predict the behavior of substantially more complexmodels.

Multiple types of RNA

One possible generalization of the constitutive model is to so-

called monomolecular systems,17,85 which allow phenomena

like RNA splicing to be accommodated. An example is the addi-

tion of splicing to the constitutive model:

B/
K XN;XN/

b XM;XM/
g
B: (Equation 11)
4 Cell Systems 14, 1–22, October 18, 2023
In general, any number of production, conversion, and degra-

dation reactions can be modeled:

B/
Ki X i;X i/

cij X j;X i/
ci0

B: (Equation 12)

Using the same technique we described earlier, the probability

Pðx; tÞ that the system is in state x˛Nn
0 at time t can be shown to

be equivalent to the GF

fðu; tÞ = f0ðUðtÞÞ+
Z t

0

KTUðsÞ ds;

dU

ds
= CU;

(Equation 13)

where Uðs = 0Þ = u, and the C matrix is defined via

Cij = cij ðis jÞ;Cii = �
Xn
j = 0

cij; (Equation 14)

and where cii : = 0 by convention.

Multiple gene states

Although themonomolecular model is a step forward, it still does

not account for nontrivial transcription rate dynamics. One pos-

sibility is that there are multiple gene states, as in the telegraph

model76,97,100:

Soff %
kon

koff
Son;Son/

kinitSon + X ;X/
g
B: (Equation 15)

The corresponding three-variable GF is
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fðu;uon;uoff; tÞ = f0ðUðtÞ;UonðtÞ;UoffðtÞÞ; (Equation 16)

dU

ds
= � gU;

dUoff

ds
= � konðUoff � UonÞ;

dUon

ds
= � koffðUon � UoffÞ+ kinitðUon + 1ÞU;

where Uð0Þ = u, Uoffð0Þ = uoff, and Uonð0Þ = uon. If we want to

marginalize over gene state, which we usually do since it is not

observable, we can set uoff = uon = 0. Notice that the relevant

ODEs are now nonlinear (Riccati-type) equations, which make

them difficult to solve by hand. In general, considering multiple

gene states, or other kinds of added complexity like autocata-

lytic reactions, yields nonlinear characteristic ODEs. This is no

obstacle to numerical integration, however.

Gene regulation

Another possibility we would like to account for is nontrivial

gene regulation. In previous work,20 we considered two

models of transcription rate variation: the gamma Ornstein-

Uhlenbeck (G-OU) model, which assumes variation is due to

changes in the mechanical state of DNA, and the Cox-

Ingersoll-Ross (CIR) model, which assumes it is due to fluctu-

ations in the concentration of an abundant regulator mole-

cule. Analyzing them can be mathematically challenging,

since the discrete stochastic dynamics of RNA production

and degradation are coupled to the continuous stochastic

process that controls the transcription rate. Fortunately,

both models and many generalizations of them can be solved

using the method of characteristics. For example, the CIR

model (assuming two RNA species) is defined by a SDE81

and three reactions:

dK

dt
= aq � kK +

ffiffiffiffiffiffiffiffiffiffiffi
2kqK

p
xðtÞ;

B/
KðtÞ

XN;XN/
b XM;XM/

g
B ;

(Equation 17)

and its solution is20

fðuN;uM; uK ; tÞ = f0ðUNðtÞ;UMðtÞ;UKðtÞÞ

+ aq

Z t

0

UKðs; uN;uM; uKÞ ds;
(Equation 18)

dUM

ds
= � g UM; UMð0Þ = uM;

dUN

ds
= b ðUM � UNÞ; UNð0Þ = uN;

dUK

ds
= UN � kUK + kq U2

K ; UKð0Þ = uK :

Thus, it is straightforward to couple dynamics defined on

different types of state spaces: categorical (e.g., gene states),

continuous (e.g., transcription rates), and discrete (e.g., RNA

counts), using the GF approach. In all cases, one obtains a GF

solution in terms of a finite set of (possibly nonlinear) ODEs.

The total number of ODEs is equal to the total number of degrees

of freedom.
One feature of single-cell biology that is challenging to capture

using this approach is feedback. For example, proteins ex-

pressed by a gene may affect the transcription rate of that

gene. Although exact solutions for systems involving feedback

are available in certain simple cases,101–104 particularly when

there is only one chemical species, more general results have

proven elusive. From the point of view of our approach, including

chemical reactions that involve feedback yields GF PDEs that

are not first order and that cannot be solved in terms of ODEs

via the method of characteristics (as explored in more detail in

the supplemental information).

Transient effects

In the context of development or reprogramming, we are

especially interested in using single-cell genomics data to

study transient processes. In particular, certain cell types or

subtypes (like neural progenitor cells) only exist for a certain

window of time, and by collecting single-cell data, we are tak-

ing a snapshot of many cells, each of which may be in a

different part of the process. How does this affect observed

RNA counts?

Different cells being observed at different times means we are

not interested in Pðx;tÞ, but Pðx; tÞ averaged over some distribu-

tion that indicates how likely we are to sample different times.

The shape of the sampling distribution fðtÞ depends on when

cells tend to exit a given state (e.g., by differentiating into a

different cell type). Nontrivial sampling distributions are compat-

ible with our GF approach, since we can simply modify the dis-

tribution that appears. For a model with one discrete species,

we can write the full GF Gtot as

GtotðgÞ =
XN
x = 0

gx

Z T

0

Pðx; tÞfðtÞdt =
Z T

0

Gðg; tÞfðtÞdt;

i.e., we can obtain it by integrating the GF that captures

intrinsic noise.

Technical noise

In single-cell genomics experiments, we do not directly

observe a given cell’s RNA counts, but those numbers filtered

through a noisy sequencing process.21 In microfluidics-

based sequencing, noise can come from some combination

of droplets not capturing all molecules (especially types of

RNA with low-copy numbers), errors in amplification, and

reads not being uniquely identifiable. We would like to

account for these kinds of technical noise in a way that is

both principled and compatible with our GF approach to

modeling intrinsic noise.

Consider a simple example, in which the relevant biology is

described by the one-species constitutive model (Equation 7),

and each RNA molecule is observed independently with proba-

bility p. The probability of observing xobs molecules of RNA, given

a biological distribution Pðx; tÞ, is

Pðxobs; tÞ =
XN
x = 0

PðxobsjxÞPðx; tÞ

=
XN
x = 0

�
x

xobs

�
pxobs ð1 � pÞx� xobsPðx; tÞ:

(Equation 19)

The corresponding GF Gtot is
Cell Systems 14, 1–22, October 18, 2023 5
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Gtotðg; tÞ =
XN
x = 0

Xx
xobs = 0

gxobsPðxobsjxÞPðx; tÞ

=
XN
x = 0

½gp+ð1 � pÞ�xPðx; tÞ;
(Equation 20)

i.e., the result is the same as without technical noise, except that

we have g/gp+ ð1 � pÞ. In general, including technical noise

requires us to replace the usual gx factor with Gnoiseðg; xÞ, the
GF associated with the observation model:

Gtotðg; tÞ =
XN
x = 0

Gnoiseðg; xÞ Pðx; tÞ: (Equation 21)

For certain common observation models, like the Bernoulli

model just described, or a Poisson noise model, we can say

more: since

Gnoiseðg; xÞ = G�ðgÞx (Equation 22)

for some G�, including technical noise amounts to replacing g

with G�, so that Gtot = GðG�Þ is a composition of GFs. In this pa-

per, we typically assume that all technical noise models satisfy

Equation 22 for some G�.
RESULTS

Theoretical framework for stochastic systems biology
Weare ready to present our general framework for stochastic sys-

tems biology, which accommodates all of the sources of stochas-

ticity described in the preceding section: intrinsic noise, transient

effects, and technical noise. In order to balance the amount of

biology our models can capture with the mathematical tractability

of thosemodels, we restrict our analysis to a fairly general class of

systems that can be solved using the method of characteristics.

For such systems, we can obtain likelihoods by integrating char-

acteristic ODEs, using the obtained characteristics to construct

the GF, and then doing an inverse (fast) Fourier transform.

This class of systems permits gene state interconversion, as

well as the production and processing of RNA and proteins,

which could be treated as discrete or continuous variables de-

pending on their concentration.We allow zero- and first-order re-

actions, including state-dependent bursting, interconversion,

degradation, and catalysis. However, we disallow higher-order

reactions (e.g., binding reactions A+B/C), including feed-

back-based regulation like protein-promoter binding. Therefore,

our analysis focuses on Markovian systems that possess N cat-

egorical degrees of freedom, corresponding to gene states; n

discrete ones, corresponding to low-copy number molecular

species; andm continuous ones, corresponding to transcription

rates or high-concentration species. This class of reactions is

schematically represented in Figure 1A; crucially, it consists of

distinct ‘‘upstream’’ and ‘‘downstream’’ components.

Given all of amodel’s possible reactions, one canwrite down a

corresponding master equation that keeps track of how micro-

state probabilities change with time:

dPðs; x; y; tÞ
dt

= jðs; x; y; tÞ; (Equation 27)
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where each microstate consists of s, the categorical dimension;

x˛Nn, the n discrete dimensions; and y˛Rm, them continuous

dimensions. The generally complicated function j aggregates all

reaction rates. Master equations like Equation 27 typically

consist of an infinite system of coupledODEs and hence are diffi-

cult to solve in general. This is one reason we chose a particular

class of systems: to solve Equation 27 using the method of char-

acteristics and hence determine a given model’s predictions, all

we need to do is solve (a finite number of) ODEs satisfied by the

characteristics and GF.

The N-dimensional GF G = ðG1;.;GNÞT of the system, which

is a function of spectral variables g and h, is defined by

Gsðg;h; tÞ : =

Z
y

X
x

gxehTyPðs; x; y; tÞdy: (Equation 28)

Equation 27 can be converted into a PDE satisfied by G:

vG

vt
= � Hðu; tÞ G+ J½Cu+diag u Du�

Hðu; tÞ = � HðtÞT � Aðu; tÞ1

u : =

"
g � 1

h

#
;

(Equation 29)

where 1 is the Hadamard/elementwise matrix product, J is

the Jacobian matrix of the GF, and u combines the discrete

and continuous degrees of freedom. The time-dependent ma-

trix H contains the kinetics of state transitions, whereas the

operator A describes the drift and bursty production pro-

cesses, which may depend on state. Therefore, the operator

H aggregates the upstream components of the system. The

matrix C contains interconversion, degradation, and mean

reversion-like terms, whereas D contains the catalysis and

square-root noise terms. H, C, and D encode a quasi-linear,

deterministic, and first-order N-component system of PDEs in

n+m spectral variables.

Applying the method of characteristics to solve Equation 29

tells us that the downstream part of the system is fully deter-

mined by a set of characteristics U, which are defined by

the ODEs

dUðsÞ
ds

= CUðsÞ + diag UðsÞ DUðsÞ (Equation 30)

where s is an integration variable, and Uðs = 0Þ = u. Mean-

while, the GF G can be determined from

dGðsÞ
ds

= HðU; t � sÞ G; (Equation 31)

which has initial condition G0ðUðtÞÞ, where G0 is the GF of the

initial distribution. The upstream components describe how

molecule production occurs and hence depend onH; their influ-

ence on the final answer is through the above integral.

The detailed form of Equation 27 is complicated, and the

arithmetic exercise of converting it into Equation 29 is tedious.

We show how to construct the biological master equation in the

section "master equation models of transcription," write it out in

full in the section "the full master equation," and discuss at a



Figure 1. The biophysical and chemical phenomena of interest, as well as the relationships between their generating functions

(A) The biological phenomena of interest: cell influx and efflux into a tissue observed by sequencing; the time-dependent transcriptional regulation of one or more

genes; downstream continuous and discrete processes.

(B) The technical phenomena of interest: the encapsulation of cells and cell debris; cDNA library construction; the loss of information in transcript identification

(GF, generating function; RTase, reverse transcriptase).

(C) The structure of the full generating function of the system in (A) and (B): to obtain the solution, we variously compose, integrate, and multiply the generating

functions of the constituent processes.

(D) The stochastic and statistical properties of four components of the full system: the background debris, the transcriptional regulation, the cell/tissue rela-

tionship, and the technical noise mechanism.
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high level how to solve it using our GF approach in the section

"generating function methods for biological stochasticity."

The terms of the full master equation are annotated in

Table S1, and the solution process is described in more detail

in the supplemental information.

In special cases, the ODEs we obtain can be solved exactly

(see, e.g., Box 2). For example, whenever D = 0, the down-

stream ODE system can be solved analytically by eigendecom-

position. If, in addition, only a single gene state is present,H van-

ishes, and the upstream component can be evaluated by

numerical integration.16 Finally, in the simplest case of a linear

operatorA, we obtain an analytically tractable system equivalent

to a deterministic system of reaction rate equations.17,85

Although this formulation nominally describes a single gene,

it may be exploited to represent multi-gene systems. Conceptu-
ally, this strategy entails constructing a model where the

transcription ofmultiple species is controlled by a common regu-

lator. We discuss potential candidate models in the section

"coupling multiple genes"; these models instantiate hypotheses

to produce H and U that represent co-regulation.

To explain the observation of transient processes, such as the

simultaneous capture of progenitor and descendant cells from a

differentiation process, we take inspiration from previous work in

sequencing86 as well as chemical reactor modeling105,106 and

extend the theoretical framework originally proposed in our

recent RNA velocity analysis.19 In brief, the simplest model that

accounts for such desynchronization proposes that cells enter

a tissue, receive a signal that triggers changes in transcriptional

rates HðtÞ, and leave at some later point. Sequencing is the

observation of cells within the tissue; to find the distribution of
Cell Systems 14, 1–22, October 18, 2023 7



Box 2. An illustration of the solution procedure

Here, we will illustrate how to solve two simple transcription models using our framework. We assume that RNA is produced with

burst event frequency a and degrades at a rate g. In the constitutive model, each transcription event creates one RNA. In the bursty

model, each transcription event creates a random number of RNA, distributed according to a geometric random variable with

mean b. Both models have N = 1, n = 1, and m = 0. Since these models are one-dimensional, the C and D matrices are 13

1. For both of them, C = ½ �g � and D = ½0 �. The ODE for the single characteristic U (with initial condition Uðs = 0Þ = u) is

dUðu; sÞ
ds

= � gUðu; sÞ 0 UðsÞ = ue�gs: (Equation 23)

For a general burst distribution pðzÞ, the transcriptional evolution operator isHðuÞ = � aðFð1 + uÞ � 1Þ, where F is the GF of the

number of molecules produced per transcription event. For our two models, we have

pðzÞ = d1;z; Fð1 + uÞ = 1+ u; HðuÞ = � au; (Equation 24)

pðzÞ = ð1+bÞ� z� 1
bz; Fð1 + uÞ = 1

1 � bu
; HðuÞ = � a

bu

1 � bu
: (Equation 25)

To compute the stationary log-generating functions log G, we evaluate the integrals:

log G =

Z N

0

aue�gsds =
ua

g
for the constitutive model and

log G =

Z N

0

a

�
1

1 � bue�gs � 1

�
ds = � a

g
logð1 � buÞ for the bursty model:

(Equation 26)

The constitutive model yields a Poisson distribution with mean a=g (cf. Equation 3), whereas the bursty model yields a negative

binomial distribution with shape a=g and scale b (cf. Equation 5).
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RNA counts, we need to condition on the distribution of times

since receiving the signal.

As we discuss in the section "transient phenomena," this latter

distribution is not arbitrary and reflects the kinetics of cell entry

and exit. In the parlance of chemical reaction engineering, the

times are drawn from fðtÞ, the internal-age distribution induced

by those kinetics.105,106 This model affords a particularly simple

representation of the GF:

G =

Z
t

X
s

GsðtÞfðtÞdt; (Equation 32)

where we marginalize over the gene state, which is typically not

observable. Conveniently, this model possesses time symmetry:

although the cells within the tissue are all out of equilibrium, the

tissue as a whole is at steady state.

We consider the technical noise phenomena shown in Fig-

ure 1B, i.e., the encapsulation of cells and background debris

into droplets, as well as the stochasticity in complementary

DNA (cDNA) library construction and sequencing. Under

the assumption of independent encapsulation, the GF of mole-

cule count distributions on a per-droplet level takes the following

form:

Gtot = GencðGÞ GbgðGÞ; (Equation 33)

where Genc is the GF of the cells per droplet, whereas Gbg is the

GF of background molecules per droplet, which depends on the

entire cell population (section droplet encapsulation noise).

Finally, to represent sequencing variability and uncertainty, we

evaluate the GF at a set of transformed coordinates:
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Gtot;ta = Gtot

�
G�

t

�
G�

aðuÞ
��
; (Equation 34)

where G�
t reflects the distribution of cDNA produced per mole-

cule of RNA (e.g., Bernoulli, as in Tang et al.107,108), whereas

G�
a reflects the distribution of ambiguous sequenced frag-

ments, which depends on transformed variables u (section

"library construction and sequencing noise" and supplemental

information).

The full GF of themolecule distribution is given by the compo-

sition and integration of the model components, as shown in

Figure 1C. To evaluate this GF, it is necessary to specify all

components that make up the model. In the analysis below,

we take advantage of the modularity of the system definition

to investigate four kinds of modeling choices, their statistical

implications, and their compatibility with sequencing data. Spe-

cifically, we treat the subsystems illustrated in Figure 1D: back-

ground noise in single droplets, stochastic transcription rate

models, sampling from a transient process, and variation in

technical noise.

Empty droplets
One of the first steps in scRNA-seq data analysis is cell quality

control, which excludes cell barcodes that appear to originate

from empty droplets from further analysis.57 For computational

tractability, this procedure typically relies on ‘‘hard’’ assignment,

such that barcodes associated with a total molecule count

above some threshold are treated as cells, whereas barcodes

below the threshold are treated as empty droplets. Threshold se-

lection is necessary because even ‘‘empty’’ droplets contain

ambient RNA. This ambient RNA, which appears to originate



Figure 2. The pseudo-bulk model of background noise is quantitatively consistent with counts from the pbmc_1k_v3 dataset

(A) The simplest explanatory model for background noise invokes the lysis of cells (green), which creates a pool of RNA that reflects the overall transcriptome

composition but retains none of the cell-level information. If the loose RNA molecules diffuse into droplets (blue) according to a memoryless and independent

arrival process, the resulting background distribution (purple: higher probability mass; white: lower probability mass) observed in empty droplets should be a

series of mutually independent Poisson distributions, with the mean controlled by the composition in non-empty droplets.

(B) The mature transcriptome in empty droplets has a mean-variance relationship near identity (gray points, n = 12; 298), consistent with Poisson statistics (blue

line); the non-empty droplets demonstrate considerable overdispersion (red points, n = 17; 393).

(C) The mature and nascent transcripts in empty droplets have sample correlation coefficients r near zero, consistent with distributional independence (gray

histogram, n = 9; 362); the non-empty droplets demonstrate nontrivial statistical relationships (red histogram, n = 14; 365).

(D) Themature transcripts of different genes in empty droplets have sample correlation coefficients r near zero, consistent with distributional independence (gray

histogram, n = 75; 614; 253); the non-empty droplets demonstrate nontrivial statistical relationships (red histogram, n = 151; 249; 528).

(E) When both are nonzero, the mature count mean in empty droplets is highly correlated with the mean in the non-empty droplets, consistent with the pseudo-

bulk interpretation (black points, n = 12; 107; dashed line: identity).
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from cells lysed in the preparation process, contaminates empty

and cell-containing droplets alike.57

The observation of ambient RNA resulting in unwanted mole-

cule counts has led to the development of statistical methods

for removing this source of noise, either by estimating and sub-

tracting it109 or incorporating it into a stochastic model.110–112

Conceptually, Equation 33 reflects the latter approach: each

droplet contains one or more cells, each with biological GF G

and background, with a GF Gbg that depends on G. To accu-

rately model the background counts, we need to propose and

justify a specific functional form for Gbg. Thus, under the

assumption that empty and cell-containing droplets are similarly

susceptible to contamination, the former provides a reasonable

estimate of ambient distributions in the latter.109

The simplest model holds Gbg to be equivalent to a ‘‘pseudo-

bulk’’ experiment, with molecules randomly sampled from the

lysed cell population. If each cell is equally likely to contribute

to the pool of free RNA, and diffusion occurs by a simple inde-

pendent arrival process, we find that the distribution of back-

ground should be Poisson, with the mean for each species pro-

portional to its mean in the original cell population, as in, e.g.,

Fleming et al.110 This functional form immediately induces a

set of testable predictions: not only are the distributions Pois-

son, but they are independent Poisson, with no meaningful sta-

tistical structure remaining between transcripts of a single
gene, as well as between different genes, as illustrated in

Figure 2A.

To characterize the accuracy of these predictions, we in-

spected six datasets (Table S2) pseudoalignedwith kallisto | bus-

tools113 and compared the data for barcodes passing bustools

quality control with data for barcodes that were filtered out. As

a shorthand, we call the former ‘‘non-empty’’ and the latter

‘‘empty’’ droplets, keeping in mind that this identification is

approximate. We fully describe the analysis procedure in the

section "empty droplets," illustrate the results for the human

blood dataset pbmc_1k_v3, and display the results for all data-

sets in the supplemental information.

As shown in Figure 2B, data from non-empty droplets are sub-

stantially overdispersed relative to Poisson, whereas data from

empty droplets are largely consistent with the Poisson identity

mean-variance relationship. However, a small number of rela-

tively high-expression genes are overdispersed. In addition,

intra-gene (Figure 2C) and inter-gene (Figure 2D) correlations

are typically nontrivial in non-empty droplets, but consistently

near zero for empty droplets, supporting distributional indepen-

dence of the background counts. Finally, the mean expression in

empty droplets is highly correlated with mean expression in non-

empty droplets, albeit lowered by approximately four orders of

magnitude (Figure 2E), supporting the assumption that the orig-

inal cells are lysed in a uniform fashion.
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To characterize the deviations from the pseudo-bulk model,

we identified the genes that demonstrated overdispersion in

empty droplets (Table S3). A considerable fraction of these

genes were associated with mitochondria or blood cells. For

example, of the 21 annotated genes overdispersed in the empty

droplets of the mouse neuron dataset neuron_1k_v3, nine were

mitochondrial (mt-Nd1, mt-Nd2, mt-Co1, mt-Co2, mt-Atp6,

mt-Co3, mt-Nd3, mt-Nd4, and mt-Cytb), three coded for hemo-

globin subunits (Hba-a1, Hba-a2, and Hbb-bs), and two coded

for blood cell-specific proteins (Bsg, Vwf).114,115 On the other

hand, of the 10 annotated genes overdispersed in the empty

droplets of the desai_dmso dataset generated from cultured

mouse embryonic stem cells,116 six (mt-Nd1, mt-Co2, mt-

Atp6, mt-Co3, mt-Nd4, and mt-Cytb) were mitochondrial, and

none were blood cell specific114 (Table S4).

Since overdispersion implies that contamination involves non-

independent encapsulation of these molecules, the results sug-

gest that the cell-free debris contains, among other structures,

entire mitochondria, or erythrocytes, when they are present in

the source tissue. These membrane-bound structures may

diffuse into droplets, then lyse and release all of their contents

at once. In other words, empty droplets do not merely have dis-

proportionally high mitochondrial content, as has been noted

previously110,117,118; they have nontrivially distributed mitochon-

drial content, which can hint at the mechanism of its incorpora-

tion, and improve interpretation where simple thresholds may

be misleading.118 We hypothesize that cases where the model

fails can be leveraged to discover more complicated forms of

contamination, such as molecular aggregates.112

In addition, we examined the total UMI counts in empty drop-

lets, which should be Poisson (Fano = 1) if each individual gene’s

distribution is Poisson. For the human blood dataset demon-

strated in Figure 2, the empty droplets had fairly significant over-

dispersion (Fano z43), which decreased, but did not disappear

(Fanoz7:6), once the 53 significantly overdispersed genes were

excluded. This result suggests that although the pseudo-bulk

model is approximately valid, some residual variance, possibly

due to variability in per-droplet capture rates, is present and

needs to be modeled to fully describe the stochasticity in sin-

gle-cell datasets.

Noise-corrupted candidate models of transcriptional
variation
A considerable fraction of the variability in single-cell datasets

arises from cell-to-cell and time-dependent variation in the

transcription rates. These sources of variation control distribu-

tion shapes. By carefully analyzing candidate models, we can

characterize the prospects for model selection: for example,

if different models produce nearly identical distributions, selec-

tion is impossible and the choice of model is somewhat arbi-

trary. More interestingly, such analysis can guide the design

of experiments: models may be indistinguishable based on

some kinds of data, but not others.20 This perspective has

guided the interest in characterizing noise behaviors74,119: dis-

tributions provide strictly more information than averages and

allow us to distinguish between regulatory mechanisms. Simi-

larly, multivariate distributions provide more information than

marginal distributions. Obtaining different data (multiple molec-

ular modalities) is qualitatively more useful than obtaining more
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data (a larger number of cells) or better data (observations less

corrupted by noise).

We illustrate this key point using the simple model system de-

picted in Figure 3A, which features intrinsic, extrinsic, and tech-

nical noise. The continuous stochastic process denoted by K

drives the rate of transcription of nascentRNA.Weconsider three

different possibilities for K: the gamma Ornstein-Uhlenbeck pro-

cess, which models DNA winding and relaxation; the Cox-Inger-

soll-Ross process, which models the fluctuations in a high-copy

number activator20; and the telegraph process, which models

variation due to random exposure of the locus to transcriptional

initiation.76,97,100All three transcription ratemodels aredescribed

by three parameters.20,100 After a Markovian delay, nascent RNA

are converted tomature RNA; after another Markovian delay, the

matureRNA is degraded.When the system reaches steady state,

it is sequenced; each biological molecule has a probability p of

being observed in the final dataset. We seek to use imperfect

count data to fit parameters and distinguish models. We fully

describe the procedures in the section "noise-corrupted candi-

date models of transcriptional variation."

Even if we have perfect information about the true averages

of the transcriptional strength and the molecular species, the

systems can exhibit a wide variety of distribution shapes and

statistical behaviors. This variety can be summarized by a

two-dimensional parameter space, which was introduced in

Figure 2 of Gorin and Vastola et al.20 The ‘‘timescale separa-

tion’’ governs the relative timescales of the transcriptional and

molecular processes; if it is high, the transcriptional process

is faster than RNA turnover. The ‘‘noise intensity’’ governs the

variability in the transcriptional process: if it is high, the process

exhibits substantial variability that translates to overdispersion

in the RNA distributions. The bottom edge of this parameter

space produces Poisson distributions of RNA, the top left

corner produces Poisson mixtures of the law of K, and the

top right corner yields bursty dynamics that do not typically

have simple analytical solutions.20

Although these regimes reflect very different transcriptional ki-

netics, they can produce indistinguishable distributions. The first

panel of Figure 3B demonstrates the likelihood landscape of a

dataset generated from the gamma Ornstein-Uhlenbeck

(G-OU) transcriptional model, evaluated using the nascent mar-

ginal and p = 1. The mixture-like true parameters are indicated

by a red point, and the top decile of likelihoods is indicated by

hatching. TheG-OUmodel’s transcription rate has a gamma sta-

tionary distribution, which produces approximately Poisson-

gamma, or negative binomial, RNA marginals in this regime.

However, the bursty regime, indicated by a blue point, also yields

a negative-binomial-like marginal,20 preventing us from identi-

fying the kinetics.

On the other hand, if we evaluate likelihoods using the entire

two-species dataset, we obtain the landscape in the second

panel of Figure 3B: the symmetry is broken, and the parameters

can be localized to the mixture-like regime. The source of this

improved performance is evident from examining the distribu-

tions, shown in the third and fourth panels of Figure 3B. The

nascent marginals are essentially identical; no amount of purely

nascent count data can distinguish between them. However, the

bivariate distributions show subtle differences, such as higher

nascent/mature correlations in the true regime, which can be



Figure 3. The stochastic analysis of biological and technical phenomena facilitates the identification and inference of transcriptional models

(A) A minimal model that accounts for intrinsic (single-molecule), extrinsic (cell-to-cell), and technical (experimental) variability: one of three time-varying tran-

scriptional processesK generatesmolecules, which are splicedwith rate b, degradedwith rate g, and observedwith probability p. Given a set of observations, we

can use statistics to narrow down the range of consistent models.

(B) Given a particular model, parameter regimes indistinguishable using a single modality become distinguishable with two. The mixture-like and burst-like

regimes both produce negative binomial marginal distributions, but have different correlation structures (left: data likelihoods over the parameter space,

computed from 200 simulated cells;G-OU ground truth; red point: true parameter set in themixture-like regime; color: log-likelihood of data, yellow is higher, 90th

percentile marked with magenta hatching; blue: an illustrative parameter set in a burst-like parameter regime with a similar nascent marginal but drastically

different joint structure. Right: nascent marginal and joint distributions at the points indicated on the left. Nascent distributions nearly overlap).

(C) Given a location in parameter space, models are easier to distinguish usingmultiple modalities. However, the performance varies widely based on the location

in parameter space and the specific candidate models: for example, the telegraph model has a well-distinguishable bimodal limit when the process autocor-

relation is slower than RNA dynamics. In addition, all else held equal, dropout noise effectively decreases the noise intensity, lowering identifiability (left: G-OU

Akaike weights under G-OU ground truth, average of n = 50 replicates using 200 simulated cells; color: Akaike weight of correct model, yellow is higher, regions

with weight <0.5 marked with black hatching; large circles: illustrative parameter sets; smaller circles: distributions obtained by applying p = 50%, 75%, and

85% dropout to illustrative parameter sets while keeping the averages constant. Right: the three candidate models’ nascent marginal distributions at the large

points indicated on the left).
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used for inference. This approach is analogous to Figure 4B of

Gorin et al.,21 where bivariate data are used to disambiguate dif-

ferences that would otherwise be indistinguishable due to the

degeneracies of steady-state distributions.
In addition, the timescale separation and noise intensity deter-

mine the model distinguishability. To quantify this, we use the

Akaike weight w6, which transforms log-likelihood differences

into model probabilities.120 For example, if the Akaike weight is
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near 1=3, the models are indistinguishable; if the correct model’s

weight is near 1, we can confidently identify the model from the

data. The first panel of Figure 3C demonstrates the average

Akaike weight landscape of datasets generated from the G-OU

model, computed using the nascent distribution at the same co-

ordinate. We indicate the region w6 < 1=2 by hatching. As the

Akaike weight may be interpreted as a posterior model probabil-

ity,120 this somewhat arbitrary threshold gives even odds for

choosing the correct model, on average.

The intermediate regime, indicated by a large olive green

point, tends to yield fairly high Akaike weights, consistent with

the two-model case explored in Figure 3A of Gorin and Vastola

et al.20 On the other hand, the burst-like regime, indicated by a

large pink point, provides considerably less ability to distinguish

the models. As expected, the situation improves somewhat

when using bivariate data (second panel of Figure 3C): the

Akaike weights increase throughout the parameter space, and

the bursty regime data move closer to even odds for model

selection.

To illustrate the source of the identifiability challenges, we plot

the nascent marginals of the models at the two points. In the in-

termediate regime, the G-OU and CIR models yield moderately

different distributions, whereas the telegraph model is immedi-

ately distinguishable by its bimodality (third panel of Figure 3C).

In contrast, in the bursty regime, the distributions are all unimo-

dal and less identifiable (fourth panel of Figure 3C); theG-OU and

telegraph marginals are particularly similar, as they converge to

the same negative binomial limit.20

Interestingly, this formulation fully characterizes the effect of

certain forms of technical noise. If the transcriptional and

observed molecular averages are fixed, but the experiment fails

to capture some molecules, the distributions are identical to

those obtained by deflating the transcriptional noise intensity.

In other words, although technical noise affects the molecules,

its theoretical effects are indistinguishable from decreasing the

variability of the transcriptional process. As the noise levels in-

crease, the RNA distributions are pushed toward the indistin-

guishable Poisson limit at the bottom edge of the reduced

parameter space. We quantify how rapidly the information de-

grades by plotting smaller circles on the first and second panels

of Figure 3C to indicate the effect of 50%, 75%, and 85%

dropout, in that order from top to bottom.

Distributions obtained from a transient process
Due to the interest in understanding developmental processes,

the characterization of transient process dynamics is a key prob-

lem in single-cell analyses. The use of mechanistic models with

multimodal data, which we emphasize here, was originally pio-

neered in the context of the RNA velocity framework, which at-

tempts to exploit the causal relationship between nascent and

mature RNA to fit transient processes.86 However, the imple-

mentations proposed so far use relatively simple noise behav-

iors,59,86,121 which do not recapitulate the bursty transcription

observed in living cells. As discussed in our recent analysis of

RNA velocity methods,19 this leads us to hold some reservations

about the robustness and appropriate interpretation of results

obtained by this class of methods.

The inference of transient dynamics from snapshot data is a

formidable problem due to a combination of theoretical and
12 Cell Systems 14, 1–22, October 18, 2023
practical factors. Most fundamentally, it is not precisely clear

what a snapshot is: how does a single measurement simulta-

neously capture the early and late states in a differentiation pro-

cess? To develop an explanatory model, we take inspiration

from the existing work on cyclostationary processes,122,123 cell

cycle ensemble measurement modeling,124–126 Markov chain

occupation measure theory,127–129 and chemical reactor engi-

neering.105,106 In the typical stochastic modeling context, we fit

count data using stationary distributions PðxÞ, obtained as the

limit limt/NPðx; tÞ of a transient distribution. By the ergodic the-

orem,130–132 this distribution, when it exists, coincides with the

occupation measure limT/N
1
T

R T
0 Pðx; tÞdt, i.e., observations

drawn from a single trajectory over a sufficiently long time hori-

zon, rather than from multiple trajectories at once. Conveniently,

the ergodic limit has time symmetry with respect to measure-

ment: the distribution does not depend on the timing of the

experiment. In the transient case, we cannot take these limits.

However, we can retain time symmetry by proposing that the

experiment samples cells at almost surely finite times t since

the beginning of the process. Therefore, we conceptualize data

as coming from a set of cells indexed by c, such that each cell’s

time tc is sampled from fðtÞ, and counts are drawn from some

distribution Pðx; tcÞ, which is not typically available in closed

form. This formulation yields Equation 32, which requires speci-

fying the distribution f.

We illustrate some of the challenges and implications using the

model system shown at the bottom of Figure 4A. The underlying

transient structure involves transitions through three cell types,

each characterized by a particular transcriptional burst size.

The transient transcription process produces nascent and

mature RNA trajectories for each cell; however, we only obtain

a single data point per trajectory. Even if we have perfect infor-

mation about the cell times, it is far from clear that we can accu-

rately reconstruct the transcriptional dynamics from snapshot

data (center of Figure 4A).

In addition, we wish to know whether we can identify the

mechanism of the snapshot collection. We can imagine cells

entering and exiting the observed tissue in multiple ways, which

correspond to different choices of fðtÞ. Some natural choices are

uniform, which implies that the cells stay in the tissue for a deter-

ministic time86; decreasing over time, so cells can exit immedi-

ately; or uniform, then decreasing, so cells must stay in the tissue

for some duration but are free to leave afterward. These choices

can bemodeled by Dirac, exponential, and Pareto residence dis-

tributions. In the parlance of chemical reactor engineering, these

configurations are known as the plug flow reactor, the continu-

ously stirred tank reactor, and the laminar flow reactor, respec-

tively. Their fðtÞ, which are the reactor internal-age distributions,

are well-known in the chemical engineering literature105,106 and

shown at the top of Figure 4A. It is not a priori obvious that the

configurations are mutually distinguishable from count data. If

they are not, the choice of fðtÞ is immaterial for inference.

We generated snapshot data from theDiracmodel and fit it un-

der all three models. To efficiently evaluate snapshot distribu-

tions, we designed an algorithm that essentially ‘‘recycles’’ tc
for trapezoidal quadrature. The method is fully described in the

section "distributions obtained from a transient process." As

shown in Figure 4B, despite only having access to a single obser-

vation per time point, all models yield results visually close to the



Figure 4. Given ordered and labeled snapshot data obtained from a transient differentiation process, we can typically fit the copy number

data, but identifying the mechanism of the snapshot is more challenging

(A) A minimal model that accounts for the observation of transient differentiation processes in scRNA-seq: cells enter a ‘‘reactor’’ and receive a signal to begin

transitioning from cell type A through B and to C. The change in cell type is accompanied by a step change in the burst size, which leads to variation in the nascent

andmature RNA copy numbers over time. Given information about the cell type abundances and the cells’ time along the process, we may fit a dynamic process

to snapshot data and attempt to identify the underlying reactor type, which determines the probability of observing a cell at a particular time since the beginning of

the process.

(B) In spite of the considerable differences between the reactor architectures, they produce nearly identical molecular count marginals (histogram: data simulated

from theDiracmodel, 200 cells; colored lines: analytical distributions at themaximum likelihood transcriptional parameter fits for each of the three reactor models.

Analytical distributions nearly overlap).

(C) The true reactor model may be identified from molecule count data, but statistical performance is typically poor (points: Akaike weight values for n = 50

independent rounds of simulation and inference under a single set of parameters; bluemarkers and vertical lines: mean and standard deviation at each number of

cells; blue line connects markers to summarize the trends; red lines: the Akaike weight values 1=3, which contains no information for model selection, and 1= 2,

which gives even odds for the correct model; two-species data generated from the Dirac model; uniform horizontal jitter added).

(D) The reactor models are poorly identifiable across a range of parameters, and rarely produce Akaike weights above 1=2 (histogram: Akaike weight values for

n = 200 independent rounds of parameter generation, simulation, and inference under the true Dirac model; red line: the Akaike weight values 1= 3 and 1= 2; two-

species data for 200 cells generated from the Dirac model; parameters were restricted to the low-expression regime m+ 4s% 25 for both species).

(E) The challenges in reactor identification arise because all three models produce similar likelihoods (histograms: likelihood differences between candidate

models and the true Dirac model for n = 200 independent rounds of parameter generation, simulation, and inference; red line: no likelihood difference; two-

species data for 200 cells generated from the Dirac model; parameters were restricted to the low-expression regime m+ 4s% 25 for both species).
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true marginals. However, despite these superficial similarities,

quantitative model identification is possible: for the simulated

dataset shown, the true Dirac model achieves an Akaike weight

of w6z79%, whereas the exponential and Pareto both achieve

z10%. Decreasing the dataset size substantially degrades the

identifiability (Figure 4C). Even at higher sizes, spread is consid-

erable; for example, a 150-cell dataset gives approximately even

odds ðw6 > 1 =2Þ on average, but individual realizations vary

from confidently correct ðw6 z1Þ to confidently wrong ðw6 z0Þ.
To understand the robustness of model identifiability, we

generated 200 synthetic datasets at random parameter values,

constrained to have fairly low expression. We observed poor

identifiability, with even or better odds for the correct model in

only 20% of the cases (Figure 4D). This performance appears

to be attributable to quantitative similarities between all three

models’ likelihoods. As shown in Figure 4E, given data of this

quality, we cannot even narrow the scope down to two models,

as neither of the candidate models performs conspicuously

worse than the true Dirac configuration. Therefore, it is possible

to fit snapshot data approximately equally well using a variety of

models; candidates for fðtÞ are identifiable in principle but chal-
lenging to distinguish from any particular dataset. This simulated

analysis implies that the details of the reactor configuration may

not matter much, providing a basis for omitting this model iden-

tification problem for real data.

Variability in library construction
To properly interpret single-cell data, we need to exhibit

caution regarding the technical noise behaviors and consider

multiple possible candidate models. However, before fitting

distributions, we must fully characterize the models and under-

stand which of their parameters are actually identifiable with

the data at hand. For example, the two-species models

explored in the section "noise-corrupted candidate models of

transcriptional variation" produce distributional forms that are

closed under the assumption pN = pM = p, i.e., the magni-

tude of the observation probability p is impossible to identify

from count data alone. Interestingly, when pNspM (that is,

when nascent and mature RNA may have different observation

probabilities), what we can learn about technical noise heavily

depends on the form of the biological noise. For example, un-

der slow transcriptional variation (as in the mixture and Poisson
Cell Systems 14, 1–22, October 18, 2023 13



Figure 5. Technical noise models may be identified from count data, either by direct application of statistics or by imposing informal priors

about the biological variability

(A) A minimal model that accounts for non-homogeneous noise: transcriptional events occur with frequency a, generating geometrically distributed bursts Bwith

mean size b; the molecules are spliced with rate b and degraded with rate g. Nascent molecules are observed with probability pN and mature molecules are

observed with probability pM.

(B) Given information about the nascent distribution and the mature mean, it is possible to use joint distributions to obtain information about the ratio of

observation probabilities (curves: average posterior likelihoods, computed from 200 independent synthetic datasets; color: true value of pM=pN, blue: 1= 4, red: 1,

purple: 4; dashed lines: location of each true value; color intensity: from lightest to darkest, synthetic datasets with 20, 50, 100, and 200 cells).

(C) Two models considered in Gorin et al.21: the species-independent bias model for length dependence in averages, which proposes that nascent and mature

RNA are sampled with equal probabilities, and the species-dependent bias model, which proposes that the nascent RNA sampling rate scales with length (top,

gold: kinetics of species-independent model; bottom, blue: kinetics of species-dependent model; center, green: the source RNA molecules used to tem-

plate cDNA).

(D) A variety of single-cell datasets produce consistent and counterintuitive length-dependent trends in nascent RNA observations (lines: average per-species

gene expression, binned by gene length; red: nascent RNA observations; gray: mature RNA statistics; data for 2,500 genes analyzed in Gorin et al.21).

(E) Fits to the species-independent model show a strong positive gene length dependence for inferred burst sizes, whereas fits to the species-dependent

model show a modest negative gene length dependence, which is more coherent with orthogonal data (lines: average per-gene burst size inferred byMonod,133

binned by gene length; gold: results for species-independent model; blue: results for species-dependent model; data for genes analyzed in Gorin et al.21 after

goodness-of-fit).
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limits of the models explored in the section "noise-corrupted

candidate models of transcriptional variation"), the RNA distri-

butions contain no identifiable information whatsoever about

the technical noise, regardless of the amount of data. On the

other hand, if transcription is bursty, the distributions depend

on the ratio of pN and pM, but not their absolute values (section

"variability in library construction"). This theoretical result calls

for further investigation: how much information can we obtain

in practice, given finite data?

To understand the prospects for distinguishing parameters,

we consider the simple model system shown in Figure 5A,

which involves bursty transcription with average burst size b,

splicing, degradation, and molecular capture with species-spe-

cific probabilities. To characterize how much information about

pM=pN we can identify from count data, we simulated 200 data-

sets at the ratio values 1=4;1, and 4 and calculated their likeli-

hoods over ð10� 2; 102Þ. We repeated this analysis using syn-

thetic datasets with 20, 50, 100, and 200 cells and plotted

the average of the posterior distributions for each condition.
14 Cell Systems 14, 1–22, October 18, 2023
As shown in Figure 5B, color-coded by the ground truth

pM=pN and intensity-coded by the number of cells, the poste-

riors are, on average, consistent with the true value. However,

even with perfect information about the averages and the

nascent RNA distribution, the uncertainty is considerable; at

larger dataset sizes, we can typically localize the ratio to an or-

der of magnitude, but not much further.

Given the statistical challenges illustrated by simulations, we

speculate that it may be more fruitful to use prior information

about biology and physical intuition about sequencing to

construct technical noise models. For example, in a recent pa-

per,21 we fit models that represent two competing hypotheses

(Figure 5C). The first has identical, gene-specific observation

probabilities p for the nascent andmature species. In this model,

the inferred burst size is bp, as these two parameters are not

mutually identifiable. The second has a gene-length-dependent

technical noise term for the nascent species, which coarsely rep-

resents a higher rate of priming for longmolecules with abundant

intronic poly(A) tracts, and a shared genome-wide term for the
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mature species, which represents priming at the poly(A) tail. In

this model, the inferred burst size is b.

These models attempt to explain the trend summarized in

Figure 5D: across a wide range of datasets, nascent RNA

averages exhibit a pronounced length dependence134 not

evident in mature RNA.135 The first model explains the trend

by a species-independent bias, as b and p control nascent

as well as mature RNA levels. Conversely, the second model

explains it by a species-dependent bias. Both models produce

fair fits to the data (as demonstrated, e.g., by the low rate of

rejection by goodness-of-fit in sections S7.4 and S7.5.2 of

Gorin et al.21).

However, the trends in the resulting inferred parameters are

strikingly different: the species-independent bias model pre-

dicts that longer genes have higher bp. Ascribing this trend

to the b term—longer genes have higher burst sizes—contra-

dicts burst size trends from fluorescence microscopy.136

Ascribing it to the p term—longer genes have higher sampling

probabilities—is physically unrealistic because mature RNA

molecules are depleted of the internal poly(A) tracts neces-

sary for priming.137 On the other hand, the species-depen-

dent model predicts a modest negative relationship between

length and burst size, which is more coherent with orthog-

onal data.

This technical noise model is a relatively simplistic low-order

approximation, since all genes have the same mature molecule

capture rate lM and length scaling CN. Nevertheless, it fore-

grounds a key modeling principle of the investigation: in the

absence of prior information, biological parameters need to be

fit on a gene-by-gene basis, but technical noise should be con-

structed using a common genome-wide model that varies in a

mechanistic rather than arbitrary way. In sum, mathematics en-

ables us to define and fit systems, but to understand whether

the fits are sensible, we need to contextualize and compare

them with previous results and physical intuition.

DISCUSSION

The results we have derived provide a blueprint for the holistic

modeling of single-cell biology and sequencing experiments.

First, we have outlined a generic mathematical framework for

treating stochasticity in living cells. By exploiting the GF repre-

sentation, we reduce discrete, continuous, and mixed reactions

to operators in a system of differential equations. These ODEs

can be straightforwardly solved via numerical integration

to compute model properties, including likelihoods. This

approach recapitulates and subsumes a wide range of previous

results.16,17,20,21,75,76,85,100,138,139

By treating the discrete and continuous degrees of freedomon

equal footing, our approachmakes certain otherwise challenging

problems straightforward to solve, as illustrated in the section

"special theoretical cases." By making simplifying assump-

tions—chiefly, the assumption of independent and identically

distributed sampling—we reduce the modeling of technical vari-

ation to the composition of GFs. Our framework may be used in

its current form or as a substrate for developing more sophisti-

cated models of transcriptional regulation and sequencing that

subsume it in turn. This process simply involves instantiating hy-

potheses, converting them into probabilistic models, and con-
structing model solutions using a procedure analogous to the

one presented in Figure 1C.

We believe that this framework comprises a productive vision

for the interpretation of large datasets, but many technological

and mathematical challenges remain. For example, the library

construction biases are dependent on molecule-specific factors

that we do not yet fully understand because their effect is heavily

convolved with biological variability. In Figure 5, we considered

two extreme cases, where the noise strength/length scaling is

either unconstrained or forced to be identical for all genes. We

anticipate that careful investigation of technical biases will be

necessary to construct models that constrain the technical

biases based on RNA chemistry while allowing for gene-to-

gene and droplet-to-droplet variabilities.

In the section "library construction and sequencing noise"

and supplemental information, we discuss the challenges asso-

ciated with modeling ambiguous species, motivated by the lim-

itations of short-read sequencing for distinguishing between

spliced and unspliced forms of the same RNA gene product.140

It is worth noting that even the spliced/unspliced binary is a

convenient simplification primarily adopted because of data

availability86,113; we stress that a truly comprehensive treat-

ment requires defining intermediate states,19 their relationships,

and their mutually indistinguishable classes. These computa-

tional foundations do not yet exist, although we have attempted

a partial solution in recent work16 and outlined some promising

directions in the supplemental information. Therefore, despite

our immediate interest in bivariate RNA distributions, our

framework is designed to generalize to other modalities as

they become practical to quantify. In addition, although we

focus on Markovian systems here, non-Markovian processing

can be represented by appropriately defining U,141 which sug-

gests avenues for the treatment of systems with molecular

memory.142,143

The full GF solutions we have outlined here are typically not

computable directly. By construction, the GF needs to be eval-

uated on a grid; Fourier inversion produces a grid of microstate

probabilities, which needs to be quite large to avoid artifacts.139

If the grid dimension is si for each discrete species i, the overall

state space size is s = N
Q

isi. Even in the simplest case,

where we only quantify and fit discrete counts, evaluating the

probability mass function requires storing and inverting an

n-dimensional array, which usually has a size s far too large

to be practical (e.g., Figure S5B of our prior work on bursty

models16).

When applicable, the GF approach has numerical advantages

over the stochastic simulation algorithm (SSA),144–146 which ap-

proximates distributions by the empirical distributions of trajec-

tories, and finite state projection (FSP),78 which directly inte-

grates a version of the master equation confined to a finite s.
Specifically, if we only care about a particular species i, we

can evaluate its marginal using a grid of size Nsi with s log s
time complexity. In the worst-case scenario, FSP requires a

grid of size s with s3 time complexity, as evaluating a particular

marginal requires explicitly evaluating the probabilities for the

entire grid, then marginalizing. Similarly, SSA requires explicitly

simulating the entire system to obtain the marginals and has

the drawback of the usual inverse square-root Monte Carlo

convergence.147,148 In addition, FSP is not compatible with the
Cell Systems 14, 1–22, October 18, 2023 15
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GFmanipulations used to represent technical noise, SSA is rela-

tively challenging to adapt to time-dependent rates,149 and

neither FSP nor SSA is readily compatible with continuous sto-

chastic processes (although exact20 and approximate20,150,151

hybrid schema can be constructed with some work). In the

future, the ‘‘curse of dimensionality’’—the reliance on grid evalu-

ation—may be possible to bypass altogether by training neural

networks to predict probability distributions, but this approach

is as of yet in its nascence152–155 and will require considerable

further development to apply to general systems.

Nevertheless, SSA and FSP are substantially more general

than the approach we outline here. The simulation- and matrix-

based methods only require a list of reactions, whereas the GF

methods also require those reactions to produce readily solvable

PDEs. We have omitted phenomena that would be trivial to treat

using FSP and SSA, such as regulation involving feedback. (In

principle, one can always construct ‘‘synthetic likelihoods’’ for

inference by fitting a function approximator to the results of sto-

chastic simulations, even for highly nonlinear and chaotic sys-

tems.156–158) To our knowledge, these phenomena, which

aremathematically analogous to addingmulti-molecular interac-

tion terms, cannot be directly treated with the method of charac-

teristics. Instead, mathematically precise treatment of them

requires perturbative methods77 or fairly complicated special

function manipulations,101–104 which do not easily generalize.

We illustrate the challenges in the supplemental information, us-

ing the example of downstream species catalyzing gene state

transitions.

On the other hand, there are a number of ways to treat sys-

tems involving feedback approximately. Approaches like the

linear-mapping approximation159 permit the derivation of

approximate but accurate GFs for such systems, which can

then be used in standard inference pipelines. Alternatively, us-

ing only the results presented here, the net effect of feedback

can be captured in the time-dependence of certain parameters

(e.g., burst sizes) if dynamics are sufficiently chaotic, or if the

time scale of feedback is slow compared with other system

time scales.

We have, until now, stressed applications to ‘‘snapshot’’ sin-

gle-cell data from dissociated tissues; however, our framework

may be extended to spatial single-cell data; for instance, we

can define transcriptional parameters that depend on the cell’s

coordinates in the tissue. In this case, the typical systems

biology goals translate to fitting a time- and space-dependent

function that governs these parameters. However, the GF formu-

lation relies on the assumption of cells being stochastically inde-

pendent; it is far from clear that this should hold for densely

sampled spatial data, and more sophisticated alternatives,

such as agent-based models, may be needed.160,161

Despite these challenges, the framework is already quantita-

tively useful. To fully ‘‘explain’’ a dataset, we need to fit gene-

specific transcriptional mechanisms, genome-wide technical

noise and co-expression parameters, and cell type structure

while controlling for potential misspecification. However, at this

time, it may be more fruitful to focus on narrower questions, us-

ing assumptions, orthogonal data, or simulated benchmarking to

justify omitting some parts of the problem.19 We have applied

this ‘‘bottom-up’’ approach to single-cell data, considering, in

turn, the estimation of transcriptional kinetics and technical
16 Cell Systems 14, 1–22, October 18, 2023
noise,21,133 the identification of transcriptional models,20 the

analysis of co-regulation patterns,16 and the determination of nu-

clear transport kinetics.141 Conversely, it may be valuable to

apply a ‘‘top-down’’ approach, augmenting an existing method

with biophysically meaningful noise, as we have proposed in

the context of transient processes19 and neural network dimen-

sionality reduction.71

We anticipate that making meaningful progress on the sto-

chastic modeling project championed by Wilkinson will require

extended ‘‘real contact’’162 between systems biology, geno-

mics, and mathematics. The general framework we propose,

which unifies a variety of previous work, represents one step

toward this synthesis. The role of mathematics here is key; as

Wilkinson noted, the stochastic systems biology of single cells

cannot be ‘‘properly understood’’ without stochastic mathemat-

ical models.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Master equation models of transcription

B The full master equation

B Generating function methods for biological stochas-

ticity

B Coupling multiple genes

B Transient phenomena

B Droplet encapsulation noise

B Library construction and sequencing noise

B Example systems
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cels.2023.08.004.

ACKNOWLEDGMENTS

G.G. and L.P. were partially funded by NIH 5UM1HG012077-02 and NIH

U19MH114830. J.J.V. was partially funded by NIH 1U19NS118246-01. The

RNA, DNA, and cDNA illustrations were derived from the DNA Twemoji by

Twitter, Inc., used under the CC-BY 4.0 license. The authors thank Dr. A.

Sina Booeshaghi, Maria Carilli, Tara Chari, Taleen Dilanyan, Dr. Kristján Eldjárn

Hjörleifsson, Meichen Fang, Catherine Felce, and Delaney Sullivan for fruitful

discussions of co-regulation, contamination, transient behaviors, catalysis,

fragmentation, genomic alignment, and a variety of other phenomena and pro-

cesses. Part of this work was performed during G.G.’s Data Sciences Co-op

with Celsius Therapeutics, Inc.

AUTHOR CONTRIBUTIONS

G.G. performed all computational experiments. G.G. and J.J.V. developed the

theoretical framework. All authors conceptualized the work and wrote the

manuscript.

https://doi.org/10.1016/j.cels.2023.08.004
https://doi.org/10.1016/j.cels.2023.08.004


ll
Synthesis

Please cite this article in press as: Gorin et al., Studying stochastic systems biology of the cell with single-cell genomics data, Cell Systems (2023),
https://doi.org/10.1016/j.cels.2023.08.004
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 29, 2023

Revised: August 16, 2023

Accepted: August 25, 2023

Published: September 25, 2023

REFERENCES

1. Wilkinson, D.J. (2018). Stochastic Modelling for Systems Biology

(Chapman and Hall/CRC).

2. Waddington, C.H. (1957). The Strategy of the Genes (Routledge).

3. Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robust-

ness. BioEssays 31, 546–560. https://doi.org/10.1002/bies.200800189.

4. Huang, S. (2012). The molecular and mathematical basis of Waddington’s

epigenetic landscape: A framework for post-Darwinian biology?

BioEssays 34, 149–157. https://doi.org/10.1002/bies.201100031.
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METHOD DETAILS

Master equation models of transcription
We are interested in continuous-time stochastic processes that combine categorical, nonnegative discrete, and (usually nonnega-

tive) continuous degrees of freedom. To solve these systems, we begin by separately defining their allowed transitions and convert-

ing them to master equation forms.
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The categorical variable, denoted by s˛ f1;.;Ng, represents the instantaneous state of a multi-state gene. By assuming that the

state interconversions are Markovian and independent of all other components of the system, we can define Hij, the rates of transi-

tioning from state i to state j:

S i/
Hij Sj: (Equation 35)

These rates can be summarized in the state transitionmatrixH˛RN3N
R 0 , such thatHii = �

P
jsiHij and

P
jHij = 0 to enforce the con-

servation of probability. This set of transitions can be represented by amaster equation involving finitelymanyODEs, which tracks the

probabilities of each state s at a time t:

vPðs; tÞ
vt

=
XN
i = 1

HisPði; tÞ; or more compactly

vPðtÞ
vt

= HTP:

(Equation 36)

As this system is expressed in terms of a differential equation for an arbitrary time t, the relation holds for time-dependent H. For

simplicity, we assume that H is deterministic.

The nonnegative discrete variables, denoted by x˛Nn
0, represent molecular copy numbers. We assume that nmolecular species

participate in four classes of transitions, and can summarize their effect by considering their reaction schema and effect on xi, the

number of molecules of species i:

X i/
cij X j;

X i/
ci0

B;

X i/
qijX i +X j;

B/
au

Bi1X i1 +/+Bi[u
X i[u

:

(Equation 37)

First, species i can be converted to species j with rate cijxi. Second, species i can spontaneously degrade with rate ci0xi. These

classes of monomolecular transitions, which either maintain or reduce the total number of molecules in the system, can be summa-

rized in thematrixCdd ˛Rn3n, such thatCdd
ij = cji andCdd

ii = � ci0 �
P

jsicij;C
dd is thematrix governing the associated reaction rate

equations.17,85 Third, species i participate in autocatalysis at the rate qii, or catalysis of species j at the rate qij. These reactions can be

summarized by the matrixQd ˛Rn3n
R 0 , such thatQd

ij = qji. Finally, molecules can be produced. In the general case, a burst of produc-

tion simultaneously creates molecules of [u discrete species fi1;.; i[ug. We assume bursts are described by a Poisson arrival pro-

cess, with burst frequency ad
u and the nontrivial [u-variate joint distribution pd

uðzÞ of non-negative burst sizes fBi1 ;.;B[ug.16 This

formulation includes the trivial case of Poisson point process production of species i, for which [u = 1 and pd
uðzÞ = dij, the degen-

erate distribution located at unity for species i and zero for all other species.

This mass actionmodel, which tracks molecule counts, can be represented by an equivalent discrete CME, which tracks the prob-

ability of each microstate x:

vPðx; tÞ
vt

=
Xn
i = 1

ci0½ðxi + 1ÞPðxi + 1; tÞ � xiPðx; tÞ�

+
Xn
i;j = 1

cij½ðxi + 1ÞPðxi + 1; xj � 1; tÞ � xiPðx; tÞ�

+
Xn
i = 1

Qd
ii ½ðxi � 1ÞPðxi � 1; tÞ � xiPðx; tÞ�

+
Xn
i;j = 1

Qd
ji ½xiPðxj � 1; tÞ � xiPðx; tÞ�

+
X
u

ad
u

"X
z

pd
uðzÞPðx � z; tÞ � Pðx; tÞ

#
:

(Equation 38)

For simplicity of notation, species that do not occur in a reaction are elided from the master equation, as in previous work on

modeling bursty transcription.16 As above, this equation holds even if the rates are time-dependent. For the purposes of this report,

we assume only au and pu can vary over time.

The nonnegative continuous variables, denoted by y˛Rm
R 0, represent concentrations or coarsely-modeled noise sources. We as-

sume that these variables are governed by Ornstein-Uhlenbeck-type SDEs:

dyt = Cccytdt + QcðytÞdWt +
X
u

dLuðtÞ; (Equation 39)
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where yt is a realization of the process, Wt is an w-dimensional Brownian motion, and Lu is a subordinator. The matrix Ccc ˛ Rm3m

sets the mean-reversion terms, whereas the operator QcðytÞ : Rm
R 0/Rm3w

R 0 sets the level of noise. We assume that each Lu only in-

cludes drift or compound Poisson terms. The drift terms have the form ac
i dij t. To slightly lighten the notation, we can aggregate all drift

terms under u = 1;.;m as fac
1dt;.; ac

mdtg; some of these entries may be zero. The compound Poisson terms have the formPNuðtÞ
k = 0ðBuÞk ,

168 such that NuðtÞ is a Poisson random variable with mean ac
ut and ðBuÞk is a set of independent and identically distrib-

uted realizations of the random variable Bu. This random variable has a nontrivial [u-variate joint density pc
uðzÞ on Rm

R 0, with the re-

maining m � [u dimensions concentrated at zero. We note that this formulation entails a slight abuse of notation, as u is used to

index over discrete burst processes as well as continuous drift and jump components.

For simplicity, we assume the noise term takes the form of an uncoupled square-root diffusion, such that w = m and QcðytÞ =

diagðs1
ffiffiffiffi
yt

p Þ. The symbol 1 denotes the elementwise/Hadamard product of two vectors, the square root should be interpreted

as elementwise, and all elements of the constant volatility vector s are non-negative. Although this choice ofQc is somewhat restric-

tive, it produces a particularly simple diffusion tensor S:

SðyÞ : =
1

2
QcðyÞQcðyÞT =

1

2
diag

�
s2 1 y

�
; (Equation 40)

where the square s2 should be interpreted as elementwise. This formulation can be reframed as a Fokker-Planck equation,169 which

tracks the probability density of each microstate y:

vP

vt
= �

Xm
i;j = 1

Ccc
ji

v

vyj
½yiP� +

1

2

Xm
i = 1

s2
i

v2

vy2i
½yiP�

�
Xm
i = 1

ac
i

vP

vyi
+
X
u>m

ac
u

�Z
z

pc
uðzÞPðy � z; tÞdz � Pðy; tÞ

�
:

(Equation 41)

As above, we assume that only the components of Lu can vary in time.

In addition to these discrete- and continuous-only terms, we need to account for these components’ interactions. For example, we

may want to represent the production of a discrete species controlled by a continuous variable, e.g., a time-varying transcription rate20:

B/
yicijX j:

(Equation 42)

This reaction has the rate yicij. This class of reactions can be summarized in the matrix Ccd ˛Rm3n
R 0 , such that Ccd

ij = cji. In other

words, this class of reactions contributes the following terms to the overall master equation:Xm
i = 1

Xn
j = 1

Ccd
ji ½yiPðxj � 1; y; tÞ � yiPðx; y; tÞ�: (Equation 43)

Finally, we may want to represent the production of a continuous species from a discrete one, e.g., the rapid translation of high-

abundance protein from low-abundance RNA.139 This class of reactions simply adds a termproportional toCdcx dt to the expression

for yt. The matrixCdc ˛Rn3m
R 0 contains the relevant rates, such thatCdc

ij is the rate of producing the continuous species i from discrete

species j. Therefore, we append a set of drift-like terms to the Fokker-Planck equation:

�
Xn
i = 1

Xm
j = 1

Cdc
ji xi

vPðx; y; tÞ
vyj

:
(Equation 44)

To construct the full master equation, we need to define a system of N coupled equations. To do so, we essentially add Equations

36, 38, 41, 43, and 44, replacing all instances of Pwith Pðs;x;y;tÞ. However, to account for differences in transcription between gene

states, we allow the u-associated terms to vary with s. The full master equation is reported below in Equation 45.
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The full master equation
The full master equation for Pðs; x; y; tÞ is:

vP

vt
=
XN
i = 1

HisðtÞPði; x; y; tÞ

+
Xn
i = 1

ci0½ðxi + 1ÞPðs; xi + 1; y; tÞ � xiPðs; x; y; tÞ�

+
Xn
i;j = 1

cij½ðxi + 1ÞPðs; xi + 1; xj � 1; y; tÞ � xiPðs; x; y; tÞ�

+
Xn
i = 1

Qd
ii ½ðxi � 1ÞPðs; xi � 1; y; tÞ � xiPðs; x; y; tÞ�

+
Xn
i;j = 1

Qd
ji ½xiPðs; xj � 1; y; tÞ � xiPðs; x; y; tÞ�

+
X
u

ad
s;uðtÞ

"X
z

pd
s;uðz; tÞPðs; x � z; y; tÞ � Pðs; x; y; tÞ

#

�
Xm
i;j = 1

Ccc
ji

v

vyj
½yiPðs; x; y; tÞ�

+
1

2

Xm
i = 1

s2
i

v2

vy2i
½yiPðs; x; y; tÞ�

�
Xm
i = 1

ac
s;iðtÞ

vPðs; x; y; tÞ
vyi

+
X
u>m

ac
s;uðtÞ

�Z
z

pc
uðzÞPðy � z; tÞdz � PðyÞ

�
+
Xm
i = 1

Xn
j = 1

Ccd
ji ½yiPðxj � 1; y; tÞ � yiPðx; y; tÞ�

�
Xn
i = 1

Xm
j = 1

Cdc
ji xi

vPðx; y; tÞ
vyj

:

(Equation 45)

We annotate the terms in Table S1.

Generating function methods for biological stochasticity
The full master equation is fairly cumbersome and challenging to analyze directly. Therefore, analysis has to proceed by spectral

methods. We use the generating function (GF), a length-N vector function G, such that each component is

Gsðg;h; tÞ =
Z N

0

/

Z N

0

XN
x1 = 0

/
XN
xn = 0

 Yn
i = 1

gxi
i

! Ym
i = 1

ehiyi

!
Pðs; x; y; tÞdym/dy1

: =

Z
y

X
x

gxehT yPðs; x; y; tÞdy;

where the lowest line is the definition expressed in useful shorthand notation. Formally, the generating function is the combination of a

probability-generating function (PGF) in the discrete variables and moment-generating function (MGF) in the continuous variables.

The arguments g˛Cn and h˛Cm are spectral variables. By computing the generating function of both sides of Equation 45, we

find (see supplemental information) that the master equation is equivalent to a much more compact system of PDEs:

vG

vt
= HTG + G1AðuÞ + J½Cu + diag u Du�: (Equation 46)

This formulation relies on defining the unified variables u:

u : =

�
g � 1

h

�
and Jsi =

vGs

vui

; (Equation 47)
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as well as unified matrices:

C : =

2664
	
Cdd


T
+
	
Qd

T 	

Cdc

T

	
Ccd

T

ðCccÞT

3775

D : =

26664
	
Qd

T 	

Cdc

T

0
1

2
diag s2

37775

: =

264
	
Qd

T 	

Cdc

T

0 ðQcÞT

375:

(Equation 48)

Each entry of the length-N matrix function A consists of the burst and drift terms:

As =
�
ad
�T
s
ðFsðu + 1Þ � 1Þ + ðacÞTs ðMsðuÞ � 1Þ

= aT
s ðMsðuÞ � 1Þ:

(Equation 49)

The vector ad
s contains the frequencies of all discrete burst processes for state s. The first m entries of ac

s contain the continuous

species’ drifts in state s. The remaining entries contain the corresponding rates of continuous burst processes. as aggregates these

quantities. The vector function Fs contains the joint PGF of the discrete burst processes, and only depends on the first n variables.

The vector functionMs contains the drift terms, as well as the joint MGF of the continuous burst processes, and only depends on the

last m variables. The parameters of the As operator may vary in time.

To obtain the generating function at t, we apply the method of characteristics. First, we calculate the characteristics parametrized

by the scalar variable s:

TðsÞ = t � s

dUðsÞ
ds

= CUðsÞ+diag UðsÞ DUðsÞ
(Equation 50)

where Uðs = 0Þ = u. This is the ‘‘downstream’’ ODE, which governs abundances in isolation from production and regulation.

Therefore, G is governed by the following system of ODEs:

dGðUðsÞ;TðsÞÞ
ds

= � HðTðsÞÞTG � G1AðUðsÞ;TðsÞÞ

: = HðU;TÞ G:

(Equation 51)

To obtainG at t, we integrate this matrix system from s = t to s = 0.We useG0ðUðtÞÞ as the initial condition, whereG0 is the gener-

ating function of the initial distribution. This is the ‘‘upstream’’ ODE, which governs the full generating function.

In the general case, evaluating this system requires two applications of quadrature: first, solving the n+m-dimensional down-

stream system to obtain the values of characteristics U at a set of grid points over ½0; t�; then, solving the N-dimensional upstream

system to obtain the value of the generating function.

Some special cases afford simpler solutions. If Ds0, the downstream ODE takes a Riccati-like form and generally resists exact

analysis.17,170 However, if D = 0 and C is diagonalizable, the system takes the tractable linear form

dUðsÞ
ds

= CUðsÞ : = V� 1LVUðsÞ;with the solution

UðsÞ = V� 1eLsVu

(Equation 52)

whenever all eigenvalues ofC are distinct. When they are not, the ODE can be solved in a similar way using generalized eigenvectors.

Practically, this means that only one application of quadrature is required.

If, in addition, N = 1, the upstream ODE reduces to a single integral:

fðtÞ =

Z 0

t

dfðUðsÞ;TðsÞÞ
ds

ds

= f0ðUðtÞÞ +
Z t

0

AðUðsÞ;TðsÞÞds;
(Equation 53)

where f : = log G, f0 = log G0, and the generating function G is no longer boldfaced because only a single gene state exists.

If A is a linear operator a1u1 +/+ an+mun+m, the system is in the drift-only regime; no bursting occurs. In this case, the system re-

duces to
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fðtÞ = f0ðUðtÞÞ +
Xn+m
i = 1

Z t

0

aiðt � sÞUiðsÞds; (Equation 54)

whereUi are the components ofU. As eachUi is, in turn, a weighted sum of ui, the second term of the log-generating function is given

by a sum of fairly simple convolutions that scale as
R t
0 aiðt � sÞeljsds.

Finally, in the simplest case, if all eigenvalues li of C are negative, the transient part of Equation 54 vanishes as t/N and the sta-

tionary log-generating function is a linear combination of ui. This implies that the distribution converges to a product of independent

Poisson distributions.17,85

Coupling multiple genes
The results solve master equations with abstracted production and processing reactions. To connect them to systems phenomena,

such as the co-regulation of multiple genes, we need to specify how upstream interactions lead to co-expression. As the simplest

illustrative model system, we can consider the co-regulation of two genes, indexed by j, with Uj = uje
�gjs. We outline several rela-

tively simple classes of candidate models which induce expression coupling.

In the simplest case, Hðu; tÞ =
P

jHjðuj; tÞ. In other words, the genes’ dynamics are fully separable, and produce solutions in

the form Gðu; tÞ =
Q

jGjðuj; tÞ. This formulation produces independent distributions at each t, but the trajectories may possess

nontrivial statistical relationships. For example, if both genes start at x1 = x2 = 0, their trajectories will be correlated over a finite

timespan ½0;T �, with the correlation decaying as T/N.

In the next simplest case, co-regulation is the consequence of parameter differences in subpopulations. For example, the full cell

population may consist of cell types indexed by k. If we suppose each cell type has the abundance pk and transcriptional parameters

Qk, we obtain

Gðu; tÞ =
X
k

pkGðu; t;QkÞ =
X
k

pk

Y
j

Gjðuj; t;Qj;kÞ; (Equation 55)

i.e., the generating function decomposes into a product of independent generating functions conditional on a particular cell type, but

not globally. In other words, even if transcriptional processes are independent, cell type structure can produce nontrivial relationships

between genes.

Alternatively, we can propose amodel of co-regulation by the categorical variables. For example, two neighboring genes may pre-

fer to have the same or opposite accessibility, depending on the polymeric properties of DNA. Assuming, for the purposes of illus-

tration, that the system is symmetric, we obtain the following N = 4 form:

H =

2666664
� 2kon kon kon 0

ε
� 1koff � ε

� 1ðkon + koffÞ 0 ε
� 1kon

ε
� 1koff 0 � ε

� 1ðkon + koffÞ ε
� 1kon

0 koff koff � 2koff

3777775

A =

2666664
0

kinitu1

kinitu2

kinitðu1 + u2Þ

3777775:
(Equation 56)

This form encodes the co-regulation of two genes, such that s˛ fboth off;gene 1 on;gene 2 on;both ong. If ε � 1, the intermedi-

ate states are unstable and the genes tend to be either both on or both off. If ε[1, the intermediate states are particularly stable, and

only one of the genes tends to be on at a time. If ε = 1, we recover the independent case.

We can define a similar model for co-regulation by a continuous variable y1. For example, there may be a latent regulator, such as

the concentration of an activator, that controls multiple loci: if it is high, both have a high transcription rate; otherwise, both are inac-

tive.20 This amounts to appending the following reactions to the master equation:

Ccd
j1 y1½Pðxj � 1Þ � PðxjÞ�; (Equation 57)

where the Ccd matrix encodes the relationship between the concentration and the transcription rate. Therefore, the genes become

mutually correlated through the trajectory of y1, although the extent of correlation depends on the dynamics.

If the categorical or continuous driving process is bursty, we can approximate it by a co-bursting module. For example, in the limit

of ε/0, the dynamics of the system in Equation 56 converge to the N = 2 formulation
e6 Cell Systems 14, 1–22.e1–e22, October 18, 2023
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H =

24� k�on k�on

k�off � k�off

35 and A =

"
0

kinitðu1 + u2Þ

#
;where

k�on =
2k2on

kon+koff
and k�off =

2k2off
kon+koff

:

(Equation 58)

If, in addition, k�off;kinit/N, we obtain the N = 1 module characterized by

A = k�on

�
1

1 � bðu1+u2Þ
� 1

�
; (Equation 59)

where b : = kinit=k
�
off.

16 This is the bursty limit of Equation 56. Interestingly, that mechanism also possesses a slow mixture limit. If

ε/Nwhile kon;koff/0, we obtain a special case of Equation 55, with pk = 1=2 and mutually exclusive expression in the ‘‘cell types,’’

or long-lived gene states.

Even when we restrict our analysis to simple feed-forward regulation, this outline of motifs is nowhere near exhaustive. Neverthe-

less, the ‘‘mixture’’ and ‘‘bursty’’ limits are particularly natural starting points, as their distributions are straightforward to construct. In

other words, we speculate that the careful analysis of co-expression models can distinguish relationships due to ‘‘slow’’ variation

between cell types and ‘‘fast’’ variation due to coupled transcriptional events.

Transient phenomena
This result yields a fairly simple numerical recipe for the determination of probabilities at a particular time t. Typically, analysis pro-

ceeds by assumingH andA are time-independent and letting t/N, i.e., considering the stationary limit of the process. However, this

may not be strictly justifiable: much of single-cell analysis involves the determination of trajectories from intrinsically transient data

representing differentiation pathways171 If the transient process occurs on a timescale comparable to RNA turnover, using a station-

ary model may not be appropriate.16

To rigorously fit transient data, we need to posit just how a snapshot of cells may capturemultiple cell states, such that some states

are the progenitors of others. The solution is not yet clear, and multiple reasonable explanations exist; for example, we may suppose

that the differentiation process ‘‘lags’’ in certain cells (in the vein of the models of variability proposed in Stumpf et al.44 for develop-

ment, and in Sanders et al.172 and Perez-Carrasco et al.125 for the cell cycle). In other words, all cells are captured at a time t since the

beginning of a process, but H andA have different time-dependence for different cells. Although such an explanatory model can be

instantiated, it may be too challenging to fit. Further, it does not appear to be compatible with processes that operate continuously;

the choice of t becomes somewhat challenging to motivate.

We propose that the simplest model for observations relies on minimal synchronization between the biology and the experimental

process. To mathematically formalize it, we take inspiration from the theory of reactor modeling in chemical engineering105 and

extend preliminary work from our recent RNA velocity methods analysis.19 A cell enters a medium; this entrance triggers a chemical

signal that begins a transient process. The dynamics of this transient process are only dependent on time since receiving the signal,

and identical between cells. After a delay, the cells exit the medium. In this framework, sequencing is the uniform random sampling of

cells present within thismedium. Although this formulation is admittedly simplistic—it excludes the cell cycle and stochastic driving—

it allows us to take the first steps with a systematic study of using snapshot data to fit transient stochastic processes. This toy model

is numerically tractable, which is useful for its simulation and characterization, and possesses a stationary state that is independent of

the time at which the experiment is performed, which is useful for biological admissibility and realism.

Therefore, to marginalize over t, we need to augment the model with an additional property: the relationship between time along a

transient process and the probability of capturing a cell. In the parlance of reactor engineering, this relationship is given by the inter-

nal-age distribution f. The simulations of transient processes in La Manno et al.86 and Bergen et al.59 implicitly adopt this model and

assume a particular functional form of f. We might suppose cells enter the observation window at t = 0 and leave it at t = T, with a

Dirac residence time distribution dðt �TÞ and uniform sampling throughout this window. The resulting age distribution is uniform, with

f = T� 1, and formally corresponds to the ideal plug flow reactor (PFR) architecture.105 As T/N, we obtain the t/N ergodic limit, if

such a limit exists. On the other hand, if f/dðt � TÞ, we recover the instantaneous distribution at time T; this limit formally corre-

sponds to the batch reactor (BR).

To obtain the generating function for the cells inside a tissue, we represent the tissue as a reactor, specify its influx and efflux prop-

erties, and solve for the internal-age distribution f. This internal-age distribution yields the occupation measure of the process times,

as discussed in our RNA velocity review,19 and induces the following reactor-wide generating function:

G =

Z
t

GðtÞfðtÞdt;where

GðtÞ =
X
s

GsðtÞ:
(Equation 60)

We have marginalized over the instantaneous gene state s because this variable is typically not observable.
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Droplet encapsulation noise
The generating function G describes the biological variability due to molecular processes, transcriptional driving, and the capture of

cells from a reaction medium. However, single-cell RNA sequencing data do not quantify cells—they quantify barcodes. Cells are

randomly encapsulated into droplets with barcoded beads; to avoid the formation of ‘‘doublets,’’ with two cells per droplet, the mi-

crofluidic protocols typically have a fairly low encapsulation rate. If we assume that a droplet may have either zero or one cells, we

obtain the following generating function for the distribution of RNA on a per-barcode level:

Genc = p1G + p0 = pG + ð1 � pÞ = GbcðGÞ; (Equation 61)

where Gbc is the PGF of the Bernoulli distribution, with p1 = p the probability of capturing a single cell and p0 = 1 � p that of

capturing none. Analogously, if we assume that doublets can occur, and the encapsulation of cells is independent and identically

distributed (i.i.d.), we find

Genc = p2G
2 + p1G + p0 = p2G2 + 2pð1 � pÞG + ð1 � pÞ2

= ½pG+ð1 � pÞ�2 = GbcðGÞ;
(Equation 62)

where Gbc is now the PGF of the binomial distribution. It is straightforward to extend this to the unconstrained case, with per-cell

encapsulation rate l, and obtain the analogous expression

Genc = p0 + p1G + p2G
2 + p3G

3 + .

= elðG� 1Þ = GbcðGÞ; (Equation 63)

where Gbc is the PGF of the Poisson distribution.

However, even empty droplets typically contain some ‘‘background’’ molecules. Removing the empty droplets by filtering for cells

with relatively high expression, as well as correcting for the background, is a standard part of sequencing workflows.57,109–112 To

model the joint distribution of biological and background RNA, we need to instantiate a mechanistic hypothesis about its source.

The simplest hypothesis consists of two parts. First, we impose the pseudobulk interpretation of background: we assume that a frac-

tion of the cells loaded in the library construction step are lysed, and produce a pool of loose molecules. Next, we assume that these

molecules are free to be encapsulated into the droplets in an i.i.d. fashion. This implies the Poisson functional form for the distribution

of debris entering each droplet:

Gbg = exp

 
c
X
i

miui

!
; (Equation 64)

where c is some shared constant that reflects the pool size and the rate of diffusion, whereas mi =
vG
vui

���
ui = 0

is the expectation of spe-

cies i over the entire cell population. This simplest model assumes that all cells are equally likely to lyse and release their contents; if

this assumption is violated, mi needs to be obtained by computing an expectation with respect to a measure biased toward the less

stable cells. Finally, the full per-droplet distribution of molecules is

Gtot = GbcGbg; (Equation 65)

i.e., each droplet contains contributions from the encapsulated cells, as well as the background. With some abuse of notation, we

occasionally use the expression GbcðGÞGbgðGÞ, where the first argument denotes composition, whereas the second denotes func-

tional dependence.

Library construction and sequencing noise
We cannot observe the biological molecule content of each droplet: we are restricted to analyzing counts of complementary DNA

(cDNA). In a typical dual-index 30 microfluidic workflow (e.g., the commercialized 10x chemistry48), these cDNA are quantified by

the following sequence of reactions. First, a synthetic primer captures a poly(A) stretch in RNA, which may be an endogenous mole-

cule or a synthetic tag.173 The primer contains a poly(dT) oligonucleotide, a sequencing primer, a cell barcode, and a unique molec-

ular identifier (UMI). Next, reverse transcriptase (RTase) attaches to the RNA-primer complex and synthesizes the complementary

strand. When the first strand is complete, a template-switching oligonucleotide (TSO) attaches to the end, allowing RT to synthesize

the second strand of cDNA. After library construction, the droplet emulsion is broken, producing a pool of long cDNA; polymerase

chain reaction (PCR) is used to amplify this pool. The long cDNA molecules are enzymatically fragmented, and another sequencing

primer is attached at the end of the molecule that formerly contained the TSO. Finally, another round of PCR amplifies the pool and

appends sample indices and Illumina adaptors to both sides of themolecule. The pool of cDNA is loaded onto a sequencingmachine

and sequenced from both sides, producing two reads. One read contains the barcode and UMI bases, whereas the other contains

partial information about the 30 end of the molecule, beginning at the fragmentation site. This sequence of reactions represents the

ideal-case scenario, and the products may well include artifacts due to off-target reactions.174

To understand the effect of technical variability on the per-barcode distributions, we need to summarize this workflow in a mech-

anistic model. First, we assume that the library preparation reactions occur in an i.i.d. fashion relative to each RNA molecule in the

droplet, allowing us to construct a separate description of technical noise for each discrete molecular species indexed by i. At this
e8 Cell Systems 14, 1–22.e1–e22, October 18, 2023
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stage, we omit the modeling of continuous species. As we quantify the number of UMIs, we can considerably simplify the description

by splitting theworkflow into the initial cDNA synthesis and all downstream steps. For the cDNA synthesis, wemay choose one of two

models:

X i/X i + T i or
X i/T i:

(Equation 66)

In the first model, the formation of a UMI-tagged cDNA T i is non-sequestering, and the template RNA X i can participate in further

cDNA synthesis. In other words, a single RNA molecule can produce more than one cDNA with distinct UMIs. In the second model,

the cDNA synthesis is sequestering, and each RNA can template at most one cDNAwith a particular UMI. For the downstream steps,

if we assume the PCR and sequencing steps produce results that are reasonably faithful to their templates, we are essentially

restricted to a single model:

T i / B : (Equation 67)

In other words, the sequence of steps after the formation of cDNA T i may lose some UMIs, but it cannot create them. Aggregating

these steps, we find the shifted per-molecule generating function for technical noise:

G�
ti = Gti � 1 = eliðgi � 1Þ � 1 = eliui � 1 ðnon-sequesteringÞ

= pigi + ð1 � piÞ � 1 = piui ðsequesteringÞ; (Equation 68)

where li = li;cpi;p and pi = pi;cpi;p. li;c is the overall Poisson rate of the catalytic production of cDNA T i with distinct UMIs, pi;c is the

probability of producing a single cDNA T i in a non-catalytic fashion, and pi;p is the probability of retaining amolecule of T i through the

PCR steps. It is straightforward to use a Taylor expansion to observe that the limit li;c � 1 yields the Bernoulli form: if non-seques-

tering sequencing is relatively slow or inefficient, the probability of obtaining multiple cDNA from a single RNA is low, and the math-

ematically simpler Bernoulli noise form approximately holds.16,133

Using the properties of PGFs,21 we find that the overall generating function is given by a simple composition, substitutingGti for gi:

Gtot;t = Gtot

�
G�

t

�
; (Equation 69)

where we use the GtotðuÞ parametrization, and each entry of G�
t contains the shifted generating function G�

ti for a particular species i.

Finally, the reads associated with each cDNA T are not always uniquely identifiable: for example, the sequence content is typically

sufficient to identify the gene, but if a read only covers an exonic portion of the gene, it is impossible to distinguish whether or not the

original molecule has been spliced.140 To correctly represent this ambiguity, we need to transform the arguments of the generating

function from a length-n vector to a length n-vector, such that n is the total number of mutually distinguishable classes of molecules.

The simplest form of this transformation is a linear categorical partition:

g = Pag; (Equation 70)

where Pa is an n3n ambiguity matrix with Pa
i;i giving the probability of molecule i being identifiable in the equivalence class i. We as-

sume that each molecule can be assigned to at least one class, implying
P

iPa
i;i = 1. In principle, only the constraint

P
iPa

i;i % 1 is

mandatory, but the loss of molecules can be equivalently reframed as a technical noise component in G�
t .

We discuss the general case of this model component in supplemental information section notes on ambiguity. In summary, the

entries of Pa are challenging to identify, but it may be possible to exploit genomic information, polymer physics, and orthogonal long-

read sequencing data to construct it from first principles. This formulation admits several special cases. For example, if we cannot

distinguish any distinct species at all and can only quantify the total RNA content, n = 1 and Pa
i;i = 1 for each i. Then we obtain

ðgÞi = g for all i and

GðgÞ= G

0BB@
2664
g

«

g

3775
1CCA:

(Equation 71)

On the other hand, if all species are perfectly identifiable, we obtain n = n andPa = In, the n-dimensional identity matrix. If, say, we

have n = 2 but n = 3, as in the case of nascent, mature, and ambiguous molecules described in La Manno et al.86 and Eldjárn Hjör-

leifsson et al.,140 we obtain

GðgÞ= G

0@24Pa
1;1g1 +Pa

1;3g3

Pa
2;2g2 +Pa

2;3g3

351A; (Equation 72)
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where g1 and g2 correspond to two unambiguously identifiable species, whereas g3 corresponds to ambiguous cDNA which may

have come from either. In the general case, we find

u = Pag � 1
= Paðu + 1Þ � 1
= Pau
= GaðuÞ � 1 : = G�

aðuÞ;

(Equation 73)

where each entry of the vectorGa contains the generating function of the relevant categorical distribution that governs how species i

is parsed as one of the n identifiable species:

ðGaðuÞÞi =
X
i

Pa
i;igi: (Equation 74)

Therefore, the overall GF takes the following form:

Gtot;ta = Gtot;t

�
G�

aðuÞ
�
: (Equation 75)

Example systems
The equation above provides a generic, modular framework for characterizing variability in sequencing experiments. To fit it to data,

we need to specify a particular set of models for each step of the process. To do so, we should first strive to understand which

modular components are realistic based on relatively simple summaries of data. Further, the process of evaluating and fitting these

models is fairly involved, and often requires substantial up-front work to design scalable solvers. Therefore, it is useful to understand

their qualitative behaviors relevant to statistical inquiry. In the current section, we characterize some analytically tractable systems, as

well as their identifiability properties, such as our ability to distinguish between different models and parameter regimes. To illustrate

these points, we apply the models to real and simulated data and speculate about their implications and physical relevance.

Special theoretical cases

We revisit section generating function methods for biological stochasticity to emphasize the implications and advantages of unifying

the discrete and continuous degrees of freedom of the biological model in a common framework. The similarity of the discrete and

continuous generating function terms is not accidental, and follows directly from the Poisson representation.93 Occasionally, we can

exploit this representation to bypass calculations for discrete processes by referring to results from the study of continuous pro-

cesses, and vice versa. This approach consists of writing down the generating function PDE for a discrete process, identifying a

continuous process governed by the same PDE, obtaining its solution from the stochastic process literature, and asserting that

the discrete process distribution is given by compounding a Poisson distribution with the continuous law.

For instance, we may consider the case of a system with constitutive transcription at rate a, autocatalysis at rate q, and degrada-

tion at rate g (N = 1, n = 1, m = 0):

B/
a X /

g
B;

X /
q
2X :

(Equation 76)

We can represent these reactions by the matrices C = � g+q and D = q, as well as the operator AðuÞ = au. This system was

introduced, but not treated, in Jahnke and Huisinga,85 and, to our knowledge, first solved with master equation and generating func-

tion calculations by Vastola.17 However, we can also solve it merely bymatching terms, without any new calculations. We provide the

full details of the parameter-matching process in supplemental information section ‘‘Poisson representation isomorphisms.’’ The

derivation consists of noticing that the functional form of C, D, and A can also arise from an N = 1, n = 0, m = 1 system with drift

a, square-root noise s =
ffiffiffiffiffiffi
2q

p
, and mean-reversion at the rate g � q. This is the Cox–Ingersoll–Ross (CIR) process, a popular math-

ematical finance model of interest rates.175,176 Its stationary distribution is gamma with shape a=q and scale q
g�q. This immediately

implies the distribution of the discrete process is negative binomial with the same shape and scale. This matches the result obtained

by directly solving the master equation.18 We find, then, that autocatalysis with constitutive transcription yields a stationary distribu-

tion equivalent to bursty transcription with no autocatalysis.

Obtaining this result, we may ask how the distribution changes if the molecules are produced in geometric bursts B with mean

size b:

B/
a
B 3 X/

g
BX/

q
2X :

(Equation 77)

By changing the drift operator to a jump operator, we obtain a PDE with AðuÞ = a
�

1
1�bu � 1


. In other words, the continuous

version of this process is a combination of CIR and gamma Ornstein–Uhlenbeck (G-OU) processes,20 with the mean-reversion terms

of both, the square-root noise of the former, and the exponentially-distributed jumps of the latter.

Define the parameter combinations
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c : = g � q

n : =
ab

bc � q
:

(Equation 78)

By direct integration, we find the characteristic and the stationary distribution

UðsÞ = cue� cs

c+quðe� cs � 1Þ

G = exp

�
a

Z N

0

bUðsÞ
1 � bUðsÞds

�
=

�
1 � qc� 1u

1 � bu

�n

:

(Equation 79)

Curiously, this distribution exactly matches the transientMGF of the G-OU process, as well as the equivalent transient PGF of the

bursty transcription process with no autocatalysis16:

G =

�
1 � bue� kt

1 � bu

�n

; (Equation 80)

wemay take advantage of the fact that qc� 1 can be equivalently expressed as be� kt <b for some positive k and t, because bc� q>

0 to have a steady state (i.e., positive n). In the continuous setting, this process is known177 to have a law consisting of a mixture of

gamma distributions with scale be� kt and shape k; in turn, k is drawn from a negative binomial distribution with shape n and scale

ð1+e� ktÞ� 1. This immediately implies that the distribution of the corresponding discrete process is a negative binomial-negative bino-

mial mixture with equivalent parameters, which may be confirmed by the considerably more involved direct derivation in supple-

mental information section "Poisson representation isomorphisms." Although this distribution cannot be expressed in closed

form, its construction makes the simulation of the bursty transient and stationary autocatalytic processes trivial, and suggests

that simple finite approximations (i.e., up to a modest k) may be developed.

The continuous formulation is a way to exploit existing quantitative results, but does not typically make problems easier. For

example, we may be interested in solving an RNA/protein system with transcription, catalytic translation (at rate q), and the degra-

dation of both species (at respective rates gR and gP). Without specifying the transcriptional dynamics, we find that the downstream

ODEs have a nontrivial D matrix, i.e.,

C=
	
Cdd


T
=

"
�gR q

0 �gP

#
and D =

	
Qd

T

=

"
0 q

0 0

#
: (Equation 81)

Although thesematrices can be exploited to obtain both characteristics, the solution depends on special functions and is thus chal-

lenging to manipulate.77 Instead, we may ask whether we can simplify the problem by eliding all stochasticity in the protein species

and assuming it may be described by a continuous process. Defining the variables for this system, we find:

C =

264
	
Cdd


T 	
Cdc

T

0 ðCccÞT

375 =

"
�gR q

0 �gP

#

D =

24 0
	
Cdc

T

0 0

35 =

"
0 q

0 0

#
;

(Equation 82)

i.e., in spite of this supposed simplification, the problem is precisely as challenging as it was before. This provides an immediate and

intuitive explanation for a range of results, such as the observation that the stationary distribution of proteins under constitutive tran-

scription has a complicated solution in terms of Kummer’s hypergeometric function even if one uses a leading-order approximation

(cf. Equations 34 and 50 of Bokes139).

Empty droplets

Model definition. In Equation 64, we propose the simplest nontrivial model for the background distribution of RNA molecules in each

droplet: the RNA content for each species i is described by a set of independent Poisson distributions whosemean is proportional to

the mean in the entire cell population. Per Equation 65, the distribution of background is convolved with the endogenous RNA dis-

tribution of cell-containing droplets, making it challenging to distinguish technical and biological contributions. However, we can

make predictions about the empty droplets, which have Gbc = 1, and compare these predictions to real datasets.

First, we define a baseline n = 2 model of biology, such that

B/
K XN/

b XM/
g
B ;

(Equation 83)

where K is a generic, but non-constant (bursty, multistate, or SDE-controlled) transcription process,XN is a nascent transcript,XM is

amature transcript, and b and g are Markovian splicing and degradation rates, respectively. As the case of constant K yields a Pois-

son distribution ofXN andXM, the case of variable K induces an overdispersed distribution of RNA in droplets with one or more cells.

Further, it implies that certain correlations are nonzero. For a given gene j, the correlation between counts of XN and XM should
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be nonzero, as the latter is, conceptually, the moving average of the former. Further, the correlation between the counts of a given

species for different genes should be nonzero, as it reflects cell type heterogeneity and gene co-regulation16 (see section coupling

multiple genes).

This model describes the biology in living cells; to connect it to UMI measurements, we assume that G�
t is an approximately linear

map, i.e., library construction is either sequestering or non-sequestering and slow. Further, we assumeG�
a is a linear map, as in Equa-

tion 74. Therefore, for each species i, we have a per-cell biological distribution with mean mi. In a droplet with a single cell, the mean

becomes mipið1 + cÞzmipi, such that pi is the overall probability of capturing, retaining, sequencing, and identifying each molecule

(section library construction and sequencing noise). In a droplet with no cells, themean is cmipi. We assume the number of doublets is

negligible.

Under the foregoing assumptions, we predict that the empty-droplet marginal per-gene UMI distribution is Poisson with mean

cmipi. This mean is proportional to the mean in non-empty droplets with a small coefficient of proportionality c. Further, we should

observe zero correlations on an intra-gene basis, between counts of X j;N and X j;M, and on an inter-gene basis, e.g., between counts

of X j1 ;M and X j2 ;M. However, it is not a priori clear that this model should even approximately describe real data, even in the case of

empty droplets. For example, these data may exhibit considerable ‘‘read depth’’ variability,65,83 or, in our framework, inter-droplet

variation in the probability pi, whichwould induce overdispersion or genome-wide correlations betweenmolecule counts. By inspect-

ing the distributional properties of empty droplet data, we can attempt to qualitatively motivate or raise doubts regarding the Pois-

son model.

Data processing. To build references and pseudoalign datasets, we used kallisto | bustools 0.26.0. We downloaded pre-built

H. sapiens and M. musculus genomes from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/

latest (10x Genomics, GRCh38 and mm10, 2020-A versions). Next, we used the kb ref function with the—lamanno option to build

references. We obtained the raw FASTQ files for the six datasets reported in Table S2. Then, we used the kb count function with

the—lamanno option, as well as the appropriate (10x v2 or v3) whitelist option -x to quantify the datasets, outputting unspliced

and spliced RNA matrices. The unspliced counts correspond to molecular barcodes containing introns, whereas the spliced counts

correspond to molecular barcodes not containing introns.140,178 For the reasons outlined in Section S6 of Carilli et al.,71 we identify

unspliced counts with ‘‘nascent’’ RNA species and spliced counts with ‘‘mature’’ RNA species, and elide any ambiguity.

Data analysis. We split the datasets into two categories. The ‘‘non-empty’’ droplets were retained after the bustools filter; the

‘‘empty’’ category contains barcodes that were discarded by the filter. Although this split is fairly coarse, as the filtering choices

are heuristic, it is coherent with typical processing workflows and allows us to inspect the broad trends of distributional properties.

To investigate the overdispersion, or lack thereof, we separately computed the mean and variance of nascent and mature UMI

counts for each gene in each set of cells. We plotted these quantities on a log-log scale, omitting the data points where one or

both of these quantities were zero. Under the pseudobulk model, we expect the non-empty droplets to exhibit overdispersion

and the empty droplets to be near identity, as the model encodes Poisson statistics for the latter.

To investigate the intra-gene correlation structure, we computed the Pearson correlation coefficient r between nascent andmature

UMI counts for each gene in each set of cells. We plotted the histograms of these values, as well as their relationship to the mature

UMI mean, omitting the data points where r was undefined. To investigate the inter-gene correlation structure, we computed the

Pearson correlation coefficient between the nascent UMI counts for each pair of genes in each set of cells, and repeated the analysis

for mature count data. We plotted the histograms of these values, omitting the data points where rwas undefined. As the number of

gene pairs is fairly large, we first excluded all genes that were not expressed in the dataset.We expect bothmeasures of correlation to

be substantial for non-empty droplets and near zero for the empty droplets, as the model encodes statistical independence between

marginal distributions for the latter.

To investigate the relationship between the empty and non-empty droplet averages, we plotted the mean mature UMI count for

each gene in empty droplets against the mean mature UMI count in cell-containing droplets. As we plotted these quantities on a

log-log scale, we omitted the data points where one or both of these quantities were zero. We repeated the analysis for mature

RNA data. We expect these averages to be highly correlated, as the pseudobulk model proposes that the background RNA are

sampled from a pool representative of the cell population.

Next, we computed and reported the Pearson correlation coefficient between the (well-defined) log-means. To characterize and

explain deviations from Poisson behavior, we selected all genes with overdispersion in the mature RNA count distributions in empty

droplets ðs2M > 23mMÞ and reported their identities. Finally, to quantify the variation not included in themodel, we computed themean

and variance of total mature UMI counts in empty droplets, with and without the overdispersed genes. As the sum of independent

Poisson distributions is Poisson, we expect the total per-cell UMI count distributions to have a variance approximately equal to

the mean.

Noise-corrupted candidate models of transcriptional variation

Model definition. We would like to characterize the mutual distinguishability of superficially similar transcriptional models. In partic-

ular, we are interested in the benefits of multimodal data collection and the effects of technical noise.
e12 Cell Systems 14, 1–22.e1–e22, October 18, 2023
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As above, we begin by defining a baseline n = 2 model of biology, such that

B/
K XN/

b XM/
g
B ;

(Equation 84)

where K represents one of three candidate transcriptional models. The discrete dynamics are summarized by

Cdd =

"
� b 0

b �g

#
UM = uMe

�gs

UN = uNe
� bs +

uMb

b � g

�
e�gs � e� bs

�
:

(Equation 85)

The first transcriptional model is the G-OU process, with N = 1 and m = 1:

dyt = � kytdt + dZt; (Equation 86)

where Zt is a subordinator with arrival rate a and exponentially distributed jumps with mean size q. This system is characterized by

u =

2664
uN

uM

uK

3775;Ccc = � k;Ccd = ½ 1 0 �

AðuÞ = a

�
1

1 � quK

� 1

�
;

(Equation 87)

with all other matrices and operators set to zero.

The second is the CIR process, with N = 1 and m = 1:

dyt = ðaq � kytÞdt +
ffiffiffiffiffiffiffiffiffiffiffi
2kqyt

p
dWt: (Equation 88)

This system is characterized by

u =

2664
uN

uM

uK

3775;Ccc = � k;Ccd = ½1 0 �;Qc = kq

AðuÞ = aquK ;

(Equation 89)

with all other matrices and operators set to zero.

We previously proposed theG-OU andCIR processes as potential explanatorymodels for gamma-distributed stochastic variability

in transcription rates, solved them, and investigated the implications of their kinetics on themodel properties and distinguishability.20

The stationary distribution of theG-OU and CIR processes is gamma, with shape a=k and scale q, i.e., mean aq=k and variance aq2= k.

In addition, their (appropriately normalized) autocorrelation function is e� kt.

Finally, the third is the telegraph process,100 with N = 2 and m = 0. This system is characterized by

u =

"
uN

uM

#
;H =

"
� kon kon

koff � koff

#
; and AðuÞ =

"
0

kinituN

#
: (Equation 90)

The stationary distribution of this process is Bernoulli scaled by kinit, withmean konkinit
kon+koff

and variance
konkoffk

2
init

ðkon+koffÞ2
. Its autocorrelation func-

tion is e�ðkon+koffÞt.81

For all three models, assuming a Bernoulli observation model (i.e., that each molecule has an independent probability p of being

observed) is equivalent to a parameter redefinition. For the G-OU and CIR models, this redefinition is that q/pq; for the telegraph

model, we have analogously that kinit/pkinit.

Let us see why this is true. Recall from section stochastic modeling of single-cell biology that the Bernoulli technical noise model

amounts to a redefinition uN/puN, uM/puM. For the G-OU model, the steady-state (log-) GF is

fssðuN;uMÞ = a

Z N

0

qUKðs; uN;uMÞ
1 � qUKðs; uN;uMÞ

ds; (Equation 91)

where UKðs;uN;uMÞ is the exponential sum solution of

dUK

ds
= UN � kUK ; UKð0Þ= 0; (Equation 92)
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and where the characteristicsUN andUM are as in Equation 85. Because theUK ODE is linear,UK depends linearly on uN and uM (and

hence on p). But fss only depends onUK through the combination qUK , so the problemwith technical noise is equivalent to redefining

q/pq.

For the CIR model, the steady-state (log-) GF is

fssðuN;uMÞ = aq

Z N

0

UKðs;uN;uMÞ ds; (Equation 93)

where

dUK

ds
= UN � kUK + kq U2

K ; UKð0Þ= 0:

The technical noise causes UN/pUN. Divide both sides by p, so that the p factor is moved elsewhere; we can see that

fssðuN;uMÞ = apq

Z t

0

UKðs;uN; uMÞ
p

ds (Equation 94)
dðUK=pÞ
ds

= UN � kðUK=pÞ+ kpq ðUK=pÞ2 UKð0Þ = 0

is equivalent, i.e., that again the technical noise problem is equivalent to a non-technical-noise problem with q/pq.

For the telegraph model, the steady-state (log-) GF is

fssðuN;uMÞ = f0ðUNðNÞ;UMðNÞ;UonðNÞ;UoffðNÞÞ (Equation 95)
dUoff

ds
= � konðUoff � UonÞ

dUon

ds
= � koffðUon � UoffÞ+ kinitðUon + 1ÞUN;

where Uoffð0Þ = Uonð0Þ = 0. Since UNðNÞ = UMðNÞ = 0, the values of UNðsÞ only affect fss through the combination kinitUN that

appears in the Uon ODE; this means we can just redefine kinit/pkinit as promised to get a completely equivalent problem.

Model analysis. Formally, thesemodels have five parameters each: three for the upstream transcriptional dynamics and two for the

downstreammolecular conversion. However, their qualitative behaviors at steady state can be effectively summarized by fixing mK , b,

and g, and varying two key parameters, the timescale separation and the noise intensity. From a statistical point of view, mK= b and

mK=g are easily and robustly identifiable from themeanmolecular counts; from an experimental point of view, b and g can, in principle,

be fit by orthogonal experiments.86 At steady state, the value of mK is a somewhat arbitrary scaling factor.

For the two-species SDE driver models, the qualitative parameters take the following form:

timescale separation : = x =
k

k+b+g

noise intensity : = y =
q

a+q
:

(Equation 96)

These parameters both range in (0,1). When the timescale separation approaches zero, the transcriptional variation is much slower

than the turnover, and the distribution of RNA is given by a simple Poisson mixture of the law of K. When the noise intensity ap-

proaches zero, the law of K degenerates and the distribution of RNA becomes Poisson. Most interestingly, when the timescale sep-

aration and the noise intensity are both high, the system exhibits bursty transcription.20

Equation 96 is defined with reference to the process parameters of the G-OU and CIR drivers.20 It remains to define k, q, and a in

terms of kon, koff, and kinit for the telegraph process. The correct identification is:

k = kon + koff is the autocorrelation timescale;

a =
konk

koff
is the process scaling; and

q =
koffkinit

k
is the gain:

(Equation 97)
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These identifications are not arbitrary, as they endow the system with lower moments that match the SDE formulation: autocor-

relation function e� kt, mean aq=k, and variance qmK . In addition, the system has the correct geometric burst limit ðkinit; koff /NÞ
with burst size q=k/kinit=koff and burst frequency a/kon

73; this limit matches the G-OU one.20

Given any combination of fx;y;mK ;b;gg, we can identify the transcriptional parameters:

k =
ðb+gÞx
1 � x

a

q
=
konk

koff

k

koffkinit
=

konk
2

k2offkinit

y =
1

1+a=q
or

a

q
=
1

y
� 1

mK

k

�
1

y
� 1

�
=
kinitkon

k2
konk

2

k2offkinit
=
k2on
k2off

=

�
kon
koff

�2

: = c;giving

kon =

ffiffiffi
c

p
kffiffiffi

c
p

+1
; koff =

kffiffiffi
c

p
+1

; and kinit =
mKk

kon
:

(Equation 98)

This allows us to define a particular set of fmK ;b;gg, vary x and y over the constrained domain ð0;1Þ3 ð0;1Þ, and compare themodel

properties for each ðx; yÞ tuple. If we are interested in a one-species model, we simply replace each instance of b+gwith b. Since the

construction in Equation 98 is bijective, if we fairly densely sample the square, we can be confident that the results fully encompass

the range of behaviors under a particular set of averages.

Simulated data analysis. To evaluate PMFs, we used trapezoidal quadrature for the G-OU generating function integral, the Runge-

Kutta method for the CIR characteristic Uk and trapezoidal quadrature for the generating function integral, and the Runge-Kutta

method for the telegraph model’s coupled differential equations.18,20 We marginalized over the continuous and categorical dimen-

sions. We evaluated all PMFs on xN;xM ˛ ½0;.;49�3 ½0;.;50�. To generate synthetic data, we sampled with replacement from the

2,550 microstates in the domain, using PðxN; xMÞ as sampling probabilities.

To investigate parameter identifiability, we generated 200 realizations from the G-OU model under k = 0:1, a = 0:4, q = 1, b =

0:8, and g = 0:9. These parameters lie in the ‘‘mixture-like’’ regime, where the transcriptional process is slower than the RNA turn-

over process. Next, we constructed a uniformly spaced 14315 grid of x and y, constructed at the true values of mK , b, and g and

bounded by [0.01,0.99]. In statistical terms, this model formulation is the best-case scenario where no noise exists and uncertainty

in the fixed parameters is negligible.

To investigate the statistical properties of one-species data, we evaluated the log-likelihood log L of the nascent marginal of the

data at each of the 210 x; y coordinates (with the true value being x = 1=9 and y = 5=7). Next, we plotted log L as a heatmap over x;y.

The coordinates with high log L are not readily distinguishable, i.e., these parameters produce very similar distributions to the data.

We highlighted the coordinates in the 90th percentile of log L—the least distinguishable region—using hatching. To illustrate a case

where the one-species data are relatively uninformative, we considered a point with x = 9=10 and y = 5=7, which lies in the qual-

itatively different ‘‘burst-like’’ regime ðk = 7:2Þ but closely resembles the ‘‘mixture-like’’ data at steady state.

To investigate the statistical properties of two-species data, we repeated the analysis above, computing the joint likelihood rather

than the marginal likelihood. In the two-species model, the true ‘‘mixture-like’’ parameter set has x = 1=18 and the illustrative ‘‘burst-

like’’ parameter set has xz0:81; the other parameters do not change. To demonstrate the source of failure to distinguish between

these parameter regimes, we plotted the PMFs in both. We used a transparent bar plot for the nascent PMFs and a heatmap for the

joint PMFs, with darker colors representing a higher probability mass.

To investigate the mutual identifiability of models, we computed their Akaike weights over the x; y landscape. The Akaike weight of

model 6 is defined as follows:

w6 =
e
�
1

2
D6

X
k

e
�
1

2
Dk

;where

Dk = AICk � AICmin;

AICmin = min
k
AICk ; and

AICk : = � 2 log Lkð bQkÞ+ 22k :

(Equation 99)

Thus, AICk is the Akaike information criterion (AIC) for model k. The AIC depends on themodel log likelihood log Lk at themaximum

likelihood estimate bQk , as well as number of model parameters 2k .
120 Therefore, the Akaike weight essentially transforms and com-

bines the models’ relative likelihoods to provide a measure of their agreement with the data.
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Although this measure has its caveats and limitations—for example, it cannot account for uncertainty in themodel-specific param-

etersQk—it is a fairly conventional criterion for model selection. Most usefully to our investigation, it admits a simple interpretation: if

the Akaike weight of the truemodelw6z1=3, there is essentially no basis for choosing a particular model, since their distributions are

not practically distinguishable. If w6 > 1=2, we have a basis for model discrimination: the odds for the correct model are even. In the

three-model case, this may reflect both, or only one, of the competing hypotheses being substantially worse at describing the data,

so more careful examination of the wk values is necessary to judge the models.

To investigate model identifiability, we constructed a uniformly spaced 14315 grid of x and y, bounded by [0.01,0.99]. At each grid

point, we generated 200 realizations from the G-OU model under mK = 5, b = 0:8, and g = 0:9. Next, we computed the log Lk of

eachmodel using the nascent marginal and the full data, and used the relative likelihoods to compute the Akaike weights of the G-OU

model under these two scenarios. Finally, to reduce the impact of stochastic sampling variability, we repeated the process 50 times

and computed their average. In other words, we generated 50 independent datasets at each of the 210 grid points, evaluated likeli-

hoods of all models, computed the univariate and bivariate G-OU Akaike weight of each, then aggregated the 50 trials at each grid

point to obtain two ‘‘average-case’’ performancemeasures. In statistical terms, this model formulation represents the best-case sce-

nario where the parameters are perfectly known, and the problem solely consists of distinguishing between the models, as in the

G-OU/CIR case considered in Figure 3 of Gorin and Vastola et al.20

To visualize the behavior of the Akaike weights under these assumptions, we plotted its value as a heatmap over x;y. We high-

lighted the coordinates withw6 < 1=2—the poorly distinguishable region—using hatching. To illustrate a case where the one-species

data are relatively uninformative, we compared a point with one-species coordinates x;y = ð0:4;0:9Þ, which lies in the ‘‘mixture-like’’

regime, to one with x;y = ð0:9;0:8Þ, which lies in the ‘‘burst-like’’ regime. We visualized these points on the x; y axes using large,

color-coded circles. From Gorin and Vastola et al.20 and the properties of low-x processes outlined in the definition of x, we expect

the former regime to be highly distinguishable, particularly since the telegraph process converges to a bimodal Bernoulli mixture for

k/0. On the other hand, we expect the latter regime to be somewhat less distinguishable; in this limit, the G-OU and telegraph

models both converge to the bursty model discussed in Singh and Bokes.138 We repeated this analysis for two-species Akaike

weights, transforming the coordinates appropriately (i.e., xz0:24 for the mixture-like regime and xz0:81 for the burst-like regime).

To demonstrate the basis of statistical distinguishability properties, we plotted the PMFs of the three models in the two parameter

regimes. To simultaneously display them, we plotted marginal distributions of the nascent species as line charts, color-coded by the

model identity.

To investigate the effect of drop-out technical noise, we did not perform dedicated simulations; instead, we exploited the result,

derived above, that the functional form of the solutions is closed under downsampling. In other words, all distributional properties of a

system with gain q and the technical noise parameter p are identical to those of a system with gain pq and no technical noise. These

properties include the model distinguishability. To illustrate this result, we represented Bernoulli technical noise by arrows in the

negative y direction, with small circles located on an arrow corresponding to 50%, 75%, and 85% dropout. To compute the y value

under dropout, we use:

y� =
pq

p� 1a+pq
; since mK =

aq

k
=

p� 1apq

k
= const: (Equation 100)

The arrows begin at 0% dropout, corresponding to the illustrative base cases (large circles) described above. This demonstrates

that increasing the drop-out rate while holding the averages constant leads to the molecular distributions’ degeneration to the Pois-

son limit. If we do not hold the averages constant, we simply obtain the decreased y� = pq
a+pq on the (less identifiable) x; y landscape

with mean transcription rate pmK .

Distributions obtained from a transient process

Model definition. As motivated in our RNA velocity review,19 understanding transient developmental processes that occur on a time-

scale comparable to RNA lifetimes requires fitting transient probabilistic models. Even under the considerable simplificationsmade in

section transient phenomena, fully treating transient transcriptional phenomena requires identifying the a priori unknown (1) internal-

age distribution fðtÞ as well as (2) process parameters forGðtÞ. As the time since process start t can be conceptualized as a cell-spe-

cific latent variable, this problem can be treated by an expectation–maximization (EM) algorithm, which may proceed by probabilis-

tically constraining the unknown (3) cell-specific times tc.

Since parameter inference is mandatory for the expectation step of the EM algorithm, we begin by characterizing the upper limit on

its performance. In particular, previous attempts to treat the problem have assumed simple Gaussian or Poisson error terms,59,86,121

or applied graph methods.179 These approaches do not recapitulate19 the discrete stochasticity and bursting observed in transient

biophysical processes.125,180 However, the transient distributions of bursty processes are not available in closed form, and require

new algorithms. Therefore, we treat the simplest nontrivial formulation, which combines points (1) and (2), while omitting (3): if we have

perfect information about the cells’ relative times, can we satisfactorily fit a bursty transcriptional model and use the results as a basis

for distinguishing between internal-age distributions?
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We define a baseline N = 1, n = 2, m = 0 model of biology with no technical noise, with the reaction schema

B/
a
B 3 XN/

b XM/
g
B ;

(Equation 101)

representing bursty transcription with stochastic burst sizes B drawn from a geometric distribution with time-dependent mean bðtÞ:

u =

"
uN

uM

#
;Cdd =

"
� b 0

b �g

#

U =

"
UN

UM

#
=

2664 uNe
� bs +

uMb

b � g

�
e�gs � e� bs

�
uMe

�gs

3775
AðuÞ = a

�
1

1 � bðtÞuN

� 1

�
;

(Equation 102)

with all other operators set to zero. To specify bðtÞ, we define a three-stage model of cell type transitions, such that

bðtÞ=

8>><>>:
b1 t < t1;

b2 t˛ ðt1; t2Þ;

b3 t > t2;

(Equation 103)

i.e., a transition is accompanied by a rapid change in burst size at a deterministic time after starting the process.

Next, we propose candidate internal-age distributions. Drawing on the chemical engineering literature,105,106 we outline one-

parameter reactor models, such that t = 0 corresponds to the cell entering the reactor; after some residence time t, which is depen-

dent on reactor architecture and drawn from the distribution fres, the cell exits. The internal-age distribution is given by

fðtÞ =
1

T

Z N

t

fresðtÞdt: (Equation 104)

The plug flow reactor (PFR) is the model implicit in previous studies.59,86 Formally, it represents each cell entering a reactor, then

exiting after some deterministic time T. Its residence-time distribution is Dirac or degenerate, with fresðtÞ = dðt � TÞ, so

fðtÞ =
1

T

Z N

t

fresðtÞdt =
1

T

Z N

t

dðt � TÞdt =
Iðt < TÞ

T
; (Equation 105)

the expected uniform distribution. This distribution has the CDF and inverse CDF

FðtÞ =
t

T
Iðt < TÞ and F� 1ðpÞ = pT: (Equation 106)

The continuously stirred tank reactor (CSTR) represents a cell entering a homogeneous reactor, then exiting after a random time, in

a memoryless fashion. Therefore, the residence-time distribution fresðtÞ = 1
Te

� t=T is memoryless or exponential, yielding

fðtÞ =
1

T

Z N

t

fresðtÞdt =
1

T2

Z N

t

e� t=Tdt =
1

T
e� t=T ; (Equation 107)

i.e., memorylessness implies that the properties inside the reactor—including the age distribution—are identical to the properties of

the efflux stream. We obtain the CDF and inverse CDF

FðtÞ = 1 � e� t=T and F� 1ðpÞ = � T lnð1 � pÞ: (Equation 108)

The laminar-flow reactor (LFR) is a configuration between these two extremes: it represents a cell entering a reactor, remaining in it

for some time deterministic time, then being able to exit after a power-law delay. Its residence-time distribution fresðtÞ = T2

2t3
Iðt > T =2Þ

is Pareto, yielding
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fðtÞ =
1

T

Z N

t

fresðtÞdt =
T

2

Z N

t

1

t3
Iðt > T = 2Þdt

=
T

2

Z N

max t;T=2

1

t3
dt

=

8>>><>>>:
T

2

Z N

t

t� 3dt =
T

4t2
t >

T

2

T

2

Z N

T=2

t� 3dt =
1

T
t <

T

2
:

(Equation 109)

The PDF can be integrated to yield the CDF and inverse CDF

FðtÞ =

8>>><>>>:
t

T
t <

T

2

1 � T

4t
t >

T

2

and F� 1ðpÞ =

8>>>><>>>>:
pT p<

1

2

T

4ð1 � pÞ p>
1

2
:

(Equation 110)

We are interested in the CDFs and inverse CDFs of the internal-age distributions because ‘‘perfect information about the cells’ rela-

tive times’’ properly requires specifying fF6ðtcÞg and fF6ðtiÞg under the true model6 rather than the raw ftcg and ftig values. Other-

wise, themodel selection problem becomes somewhat trivial; for example, if we know themean residence time is T andwe know one

of tc > T, we can immediately eliminate the PFR configuration without performing any calculations.

A synthetic dataset consists of observations xN;c; xM;c for each cell c, generated from the true model6 at the true time point tc. The

log-likelihood of parameters Qk = fb1;b2;b3;a; b;ggk for model k takes the form

log Lk;cðQk

��xN;c; xM;cÞ = log PðxN;c; xM;c; tc;k
��Qk ; ftigkÞ; (Equation 111)

where tc;k : = F� 1
k ðF6ðtcÞÞ and ftigk : = fF� 1

k ðF6ðtkÞÞg are the transformed times. This yields the full log-likelihood under the

assumption of independence

log LkðQkÞ =
X
c

logLk;cðQk

��xN;c; xM;c; ftigkÞ

=
X
c

logPðxN;c; xM;c; tc;k
��Qk ; ftigkÞ:

(Equation 112)

The problem of identifying themaximum likelihood parameter set consists of optimizing Equation 112with respect toQk . The prob-

lem of reactor identification consists of using the resulting reactor-specific maximum likelihood value log Lkð bQkÞwith Equation 99 to

obtain the Akaike weights of each reactor configuration.

Simulated data analysis. To generate the illustrations in Figure 4A, we directly simulated cells entering and exiting each reactor

configuration. First, we sampled arrival times from a uniform distribution on [0,100]. Next, we sampled residence times by inverse

transform sampling from the inverse CDF corresponding to each fres, using the mean residence time T = 2. We arbitrarily selected

the observation time 75 and selected all cells which had arrived but not exited at this time. We computed the cell age by subtracting

the arrival time from the current time. We repeated this procedure 107 times for each reactor to obtain the internal-age distribution.

Next, we computed the histogram of the distribution on [0,10], using 200 bins. To account for the fact that this histogramonly contains

part of theCSTR and LFR densities, we rescaled the bins by the internal-age distribution’s CDF value at t = 10. Finally, we plotted the

rescaled histogram as a bar plot, and the analytical f as a line plot for comparison.

To understand the actionable differences between reactors, we simulated data from a single reactormodel, then fit all threemodels

to the obtained counts. First, we sampled 200 true reaction times ftcg under the PFRmodel with T = 5 and sorted them. To generate

synthetic data, we used Gillespie’s stochastic simulation algorithm141,145 with a time-dependent burst size, storing the state of the

system at ftcg. We generated 200 realizations, using only one realization per time point to fit the models. To simulate, we used the

parametersQ6 = fb1;b2;b3;a; b;gg6 = f2;5; 1; 0:8;1:2;3:14g. We set ft1; t2g to f1;3g. We started the system in a bivariate Pois-

son initial distribution with l0N = ab1

b
nascent and l0M = ab1

g
mature molecules on average. Although this initial condition is somewhat

arbitrary, as it is out of equilibrium, it is readily tractable and yields a constant mean over the first stage of the process.

The instantaneous probability PðxN;c; xM;c; tc;k
��Qk ; ftigkÞ is not available in closed form, and needs to be obtained by inverting the

generating function for each tc;k
16,20,138:

Gðu; tc;kÞ = exp
�
l0NUNðu; tc;kÞ+ l0MUMðu; tc;kÞ

+a

Z tc;k

0

�
1

1 � bðtc;k � sÞUNðu; sÞ
� 1

�
ds

�
;

(Equation 113)

where we elide the dependence of b on the model-specific ftigk . For a given value of u, it is straightforward to propagate the initial

condition. However, it is impractical to compute the integral separately for each c. We can bypass this bottleneck by reusing quad-

rature points. Conceptually, we define the quadrature matrices
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TQ =

2666666664

bðt0 � t0Þ 0 / 0 0

bðt1 � t0Þ bðt1 � t1Þ / 0 0

« « 1 « «

bðth� 1 � t0Þ bðth� 1 � t1Þ / bðth� 1 � th� 1Þ 0

bðth � t0Þ bðth � t1Þ / bðth � th� 1Þ bðth � thÞ

3777777775

DQ = diag

2666666664

UNðu; t0;kÞ

UNðu; t1;kÞ

«

UNðu; th� 1;kÞ

UNðu; th;kÞ

3777777775

(Equation 114)

in the general case with h cells. We appended the starting grid point t0;k : = 0 to properly integrate from zero. We use the notation TQ

because this matrix is Toeplitz in the narrow, but numerically relevant,19 case of a uniformly spaced grid approximating sampling from

a PFR. To lighten the notation, we drop the subscript k from the time points in the definition of TQ.DQ is diagonal and does not need to

be constructed explicitly; to obtain the product TQDQ, we broadcast TQ with the vector used in the definition of DQ. Then, we

computed MQ = ð1 � TQDQÞ1ð� 1Þ � 1, where 1ð� 1Þ is to be interpreted as the elementwise/Hadamard inverse of the matrix.

Finally, we approximated the integral by applying the NumPy quadrature algorithm trapz along the rows of MQ, using ftc;kg as the

integration grid.181 The GF evaluation grid size was set to ½0;.;max xN + 4�3 ½0;.;max xM + 4�, where max xi is the highest RNA

count observed for species i over the entire simulation, in all cells.

Next, we used the SciPy algorithm optimize.minimize182 to minimize the negative log-likelihood of the data under all three models,

and obtain a satisfactory set of parameters. Specifically, we varied the 6-dimensional vector log10 Q, with each log-parameter’s

bounds set to ð� 1:5;1:5Þ. We optimized with the L-BFGS-B solver for a maximum of 20 steps. Since we are primarily interested

in the models’ relative performance at their maximum likelihood estimates (MLEs), rather than the process of obtaining these esti-

mates, we initialized each search at the parameters used to generate the data.

Next, we sought to illustrate the fit performance and the differences between themodels’ distributions. We plotted themarginals of

the simulated data at each time point tc as bar plots, now using the counts from all 200 cells to demonstrate the full transient distri-

bution. Next, we plotted the marginal PMFs of the three models at the corresponding time points tc;k as color-coded line charts. We

expect the true reactor configuration (PFR) to closely agree with the distribution shapes; however, we have no a priori information

regarding how well other reactor architectures can recapitulate the same data. To quantify the prospects for model selection, we

inserted the optimal log-likelihoods into Equation 99 and calculated the Akaike weights of the model candidates.

To characterize the identifiability properties, we reproduced the simulation and analysis process using the same parameters, but

varying the dataset size, with h = { 20, 40, 60, 80, 100, 150, 200 }. For each h, we generated 50 synthetic datasets, fit them, and

computed the Akaike weights of the models. We plotted all w6 as a function of the number of cells, adding uniform jitter to facilitate

inspection. To visualize the trends in model identifiability, we plotted the mean and standard deviations of all w6 for a given h, con-

necting themwith a line to guide the eye.We do not a priori knowwhether the reactor configurations aremeaningfully distinguishable,

but if they are, we expect them to become more so with more data.

Next, we sought to characterize the prospects for distinguishing reactor models for a broader range of transcriptional parameters.

We used rejection sampling to drawQ6. First, we drew log10bi from a normal distribution withmean 0.8 and standard deviation 1, and

all other log-parameters from a normal distribution with mean 0 and standard deviation 1. The parameters were clipped to stay in the

domain ½10� 1:4; 101:4� to avoid ‘‘trivial’’ regimes with excessive timescale separation relative to the reactor residence time. Next, we

found the highest bi, computed the nascent and mature mean and standard deviation corresponding to this set of bi;a;b;g,
138 and

kept the proposedQ6 if mN + 4sN and mM + 4sM were both lower than 25. Otherwise, we regeneratedQ6. This is an ad hocway to limit

the state space size for PMF evaluation: although we do not know what the maximum observed counts will be until we simulate the

system, m+ 4s is typically provides a reasonable estimate.97 Rejecting parameters in this fashion approximately limited the state

space size to 253 25. In this way, we simulated, fit, and computed the Akaike weights for 200 parameter sets. All used the PFR

ground truth model, ft1;t2g = f1;3g, and T = 5 as above.

To summarize the model identifiability over this domain of synthetic parameters, we plotted the distribution of AIC weights w6.

Finally, to characterize the relationships between the models, we plotted the distributions of log-likelihood differences

log Lkð bQkÞ � log L6ð bQ6Þ, where k corresponds to the CSTR and LFR models, as transparent histograms color-coded by k. If

such a histogram is skewed toward negative values, the model k produces consistently worse fits than the true PFR model. In the

other hand, if it is centered at zero, then model k is typically easily confused with the true model. We restricted this visualization

to ð�5;5Þ to compensate for potential failure to converge, which produces inflated likelihood differences. This visualization provides

a basis for explaining the distribution of w6.
Cell Systems 14, 1–22.e1–e22, October 18, 2023 e19



ll
Synthesis

Please cite this article in press as: Gorin et al., Studying stochastic systems biology of the cell with single-cell genomics data, Cell Systems (2023),
https://doi.org/10.1016/j.cels.2023.08.004
Variability in library construction

Model definition. In section noise-corrupted candidate models of transcriptional variation, we considered the parameter and model

identifiability for a two-stage model of RNA processing, and found that several interesting distributions are closed under downsam-

pling, so long as the downsampling is Bernoulli with equal parameters for both species. However, this assumptionmay be too restric-

tive in practice: for example, nascent RNA may be more or less likely to be captured than mature RNA, depending on the poly(A)

content of their introns. In the current section, we investigate the behavior of models with differences in capture probabilities or rates.

The identifiability properties are highly model-dependent. For example, if we consider the G-OU or CIR models, with N = 1,

n = 2, m = 1, such that

B/
K XN/

b XM/
g
B ;

(Equation 115)

where the autocorrelation of K is k � b;g, the stationary distribution of K is gamma with shape n = a=k and scale q. We find the sta-

tionary RNA generating function is bivariate negative binomial, with

G =

0BB@ 1

1 � quN

b
� quM

g

1CCA
n

; (Equation 116)

which is outlined in the Section S2.5.2 of Gorin and Vastola et al.20 Under sampling, the distribution stays bivariate negative binomial,

with GF

G =

0BB@ 1

1 � qpNuN

b
� qpMuM

g

1CCA
n

: (Equation 117)

In other words, even if we have perfect information about this distribution’s three parameters n, qpN=b, and qpM=g, we cannot

conclude anything about the magnitudes of pN and pM, as they are degenerate with q, b, and g. If K is telegraph (i.e., N = 2,

n = 2, m = 0), we obtain a finite Poisson mixture:

G =
koff
k

+
kon
k

exp

�
kinitpNuN

b
+
kinitpMuM

g

�
; (Equation 118)

which exhibits the same degeneracy with respect to kinit, b, and g. Entirely analogously, if the system is in the Poisson limit ðyz0Þwith

average transcriptional strength mK , we find that sampling yields

G = exp

�
mKpNuN

b
+
mKpMuM

g

�
; (Equation 119)

which is non-identifiable.

Interestingly, the bursty regime is partially identifiable. We begin by defining a baseline N = 1, n = 2,m = 0 model of biology with

technical noise but no ambiguity, such that

B/
a
B 3 XN/

b XM/
g
B

(Equation 120)

representing bursty transcription with stochastic burst sizesB drawn from a geometric distribution with constant mean b. Further, we

assume that a molecule X i is retained with probability pi, yielding:

G�
t ðuÞ =

"
pNuN

pMuM

#
;Cdd =

"
� b 0

b �g

#

U
�
G�

t ðuÞ; s
�
=

2664pNuNe
� bs +

pMuMb

b � g

�
e�gs � e� bs

�
pMuMe

�gs

3775
AðuÞ = a

�
1

1 � buN

� 1

�
:

(Equation 121)

In other words, the stationary generating function is given by

exp

�
a

Z N

0

A
�
U
�
G�

t ðu; sÞ
��
ds

�
: (Equation 122)

In principle, this quantity can be integrated, inverted, and optimized with respect to the parameters. However, to be thorough, we

need to reformulate the optimization problem in the most compact form available, which involves identifying the distribution’s
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degeneracies. Although this system formally has six parameters b;a;b;g;pN;pM, at steady state only four are identifiable. This is made

clear by examining the integrand:

bUN = bpNuNe
� bs + b

pMuMb

b � g

�
e�gs � e� bs

�
= bpN

�
uNe

� bs +
pM

pN

uMb

b � g

�
e�gs � e� bs

��
;

(Equation 123)

i.e., the characteristic is invariant so long as bpN and pM=pN are constant. By plugging in zero for uN or uM, we observe that the char-

acteristics take the functional form of the characteristics of the noise-free system, implying different values of pN and pM may give

indistinguishable distributions. Therefore, identifying the relationship between pN and pM requires bivariate data. To quantitatively

characterize how identifiable pN and pM are, we need to use simulations.

However, challenges particular to single-cell technologies arise when attempting to apply this model to large datasets with many

genes. Although the Bernoulli model is a useful approximation, considering the sequencing process suggests that the non-seques-

tering technical noise model is more realistic: there is no chemical barrier to an RNA molecule being captured multiple times. In this

formulation, each gene’s technical noise is parametrized by the species’ overall capture rates lN and lM, which produce the Bernoulli

limit when both of these parameters are small.

Furthermore, it appears implausible that lj;N and lj;M, where j indexes over genes, vary arbitrarily. In a previous report,21 we have

found that themodel lj;N = CNLj and lj;M = lM performs satisfactorily. In this model, the nascent species are identified with unspliced

molecules, which are considerably longer than spliced molecules and contain a large number of internal poly(A) priming sites. To a

first-order approximation, we may propose that nascent species are captured at a rate proportional to the gene length Lj, where the

constant of proportionality CN is a dataset-wide technical noise parameter. Analogously, we identify the mature species with fully

spliced, poly(A)-tailed molecules, and make the zeroth-order approximation that poly(A) tails are chemically identical. The capture

rate lM is, then, also dataset-wide. Although this model is relatively simplistic, it foregrounds a key challenge. Even if we assume

different genes’ transcriptional processes are independent, we cannot fit their distributions independently, as we need to account

for coupling through the technical noise parameters.

Data analysis To illustrate the identifiability of pM=pN under the Bernoulli noise model, we considered the likelihood landscape for

the simplest one-parameter formulation. We fixed the parameters a = 1, bpN = 4:9, mN = abpN

b
= 7, and mM = abpM

g
= 10; in other

words, the nascent RNA distribution is negative binomial with shape a
b
z1:43 and scale bpN. We simulated data at pM= pN ˛

f1 =4;1;4g, with h = f20; 50; 100; 200g simulated cells. For each of the true pM=pN and h values, we generated 200 datasets by sam-

pling from the PMF on ½0;.;99�3 ½0;.;99�. To evaluate the PMF for pM >pN, we set pM to unity with no loss of generality. To evaluate

it for pN <pM, we set pN to unity. This yields b = ðbpNÞ
pN

and g = abpM

mM
. Next, we computed the likelihood of the data under log10pM= pN ˛

½ � 2;2�, keeping a, b pN, mN, and mM constant, using the evaluation grid size ½0;.;max xN + 3�3 ½0;.;max xM + 3�, where max xi is

the maximum observed for each species in the simulation. We used 200 log10pM=pN grid points, evenly spaced throughout the

domain. Next, we computed the posteriors over the grid by dividing each likelihood vector by its sum. Finally, we plotted the average

posterior distribution using line charts, with the color indicating the true value of pM=pN and the intensity indicating the number of

cells, with more saturated colors corresponding to more simulated cells. For ease of comparison, we plotted the true values using

dashed lines. From a statistical perspective, this analysis summarizes the parameter identifiability conditional on perfect information

about the nascent marginal and the species averages. As we do not a priori know whether the differences in the PGF are actionable,

the analysis illustrates the sample sizes required to fit the parameter to a particular degree of precision.

We previously motivated and fit the Poissonmodel of technical noise.21,133 In Gorin et al.,21 we inspected a variety of datasets, and

observed a pronounced length bias in the nascent RNA count data, which did not appear inmature RNA counts (Section S7.3 of Gorin

et al.21). This bias may be explained by three naı̈ve models of biology.

The first model posits that the nascent RNAmolecules are in the process of being transcribed; higher amounts of nascent RNA for

longer genes simply reflect longer elongation delays. Although this explanation is superficially plausible, it is not borne out by the

data. The model predicts a geometric-Poisson distribution of nascent RNA and zero correlation between nascent and mature

counts.141,143 Real data, on the other hand, have distinctly negative binomial-like marginals (as evident in, e.g., the third column

of Figure 4B of our recent work on delay CMEs,141 which shows consistently inferior fits under the delay model), and nontrivial

nascent/mature correlations (as in the red histogram in Figure 2B).

The second model posits that the differences in expression reflect real differences in the underlying biological parameters, and

technical noise may be neglected. However, fitting this model produces pervasive length biases in the parameter values (section

S7.4 of Gorin et al.21), which are inconsistent with trends observed in orthogonal data. This is the model we explored in Gorin et al.21

The third model posits that technical noise does occur, but takes the species-independent form pM=pN. This formulation is math-

ematically identical to the secondmodel, but proposes that an apparent length bias in the burst size is actually a length bias in bp. This

model partially bypasses the objection raised for the second model by proposing that p is gene length-dependent, identical for

nascent and mature species, and higher for longer genes. However, this model is implausible on physical grounds, as mature tran-

scripts do not have the intronic poly(A) content necessary to produce this length dependence. This is indirectly implied by the consis-

tently low fraction of exonic reads in sequencing datasets, in contrast to introns and the 30 untranslated region.137
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These biases can be largely eliminated by proposing a length-dependent sampling rate for nascent RNA counts, suggesting that

this technical noise model is more coherent with known biology. To illustrate this process, we summarize the key results from Gorin

et al.21

We obtained the raw data for the twelve 10x v3 datasets reported in Table S4 of Gorin et al.21 The raw data consisted of nascent

and mature count matrices for 2,500 genes per dataset. The counts were generated by running the kallisto|bustools 0.26.0 kb count

command on the raw FASTQs with the—lamanno option, using an intronic/exonic index built from the GRCh38 and mm10 reference

genomes, as described in Section 6.8.2. The datasets were filtered to remove low-expression droplets, first using the default bustools

filter, then using the manually selected knee plot thresholds shown in Table S5 of Gorin et al.21 Next, they were filtered for the top

2,500 moderate- to high-expression genes using the procedure in section S4.3.1 of Gorin et al.21 To visualize the broad trends in

count averages, we obtained the gene lengths Lj, then binned the values of log10Lj into ten bins, with the edges given by the deciles

d0;d1;.;d10. Next, we computed the average log10 mean of nascent and mature expression levels for genes falling into each bin.

Finally, we plotted these mean levels at each bin center dk +
1
2 ðdk+1 � dkÞ, connecting the values with a line to guide the eye. We

repeated this analysis for all twelve datasets, distinguishing the nascent and mature statistics by color.

Next, we obtained the fit results for these datasets. The fits were performed usingMonod 0.2.5.0 Python package133 as described

in Gorin et al.21 Fitting themodel with no technical noise entailed gradient optimization over the per-gene joint distributions to fit bj, bj,

and gj. Although the model did not explicitly include technical noise, the theoretical discussion above implies that the results can be

interpreted as those from a p = pN = pM model, with the inferred ‘‘burst size’’ corresponding to bj pj for gene j. Fitting the model with

technical noise entailed scanning over a grid of CN and lM, obtaining per-gene maximum likelihood estimates of bj, bj, and gj con-

ditional on the technical parameter values at the grid point, then identifying the grid point which produced the lowest sum of Kullback-

Leibler divergences over all genes. In both cases, the genes underwent a round of goodness-of-fit filtering to remove fits that did not

accurately recapitulate the data, as in Section S4.3.5 of Gorin et al.21 Next, we computed the average inferred log10 burst size for the

genes falling into each length bin. As with the means, we plotted the average burst sizes at each bin center. connecting the values

with a line to guide the eye. We repeated this analysis for all twelve datasets, distinguishing the results fit with and without a technical

noise component by color.
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